Вернуться к обычному виду



Блог Олега Фиговского - Сообщения с тегом "Нанотехнологии инновации"

  
  • Архив

    «   Декабрь 2019   »
    Пн Вт Ср Чт Пт Сб Вс
                1
    2 3 4 5 6 7 8
    9 10 11 12 13 14 15
    16 17 18 19 20 21 22
    23 24 25 26 27 28 29
    30 31          
Фиговский Олег  Львович

Блог Олега Фиговского

Автор: Фиговский Олег Львович

Prof. Oleg L. Figovsky is the founder, Director R&D of International Nanotechnology Research Centre “Polymate” (see at: http://www.polymateltd.com/), where he is carrying now many research works in nanostructured corrosion resistant composite materials and protective coatings based on polymer and silicate matrix. In 1982 he elaborated the first nanostructured anticorrosion composite materials based LG-matrix, where nanoparticles are forming during technological process by hydrolysis of TFS. Last his elaborations are nanostructured nonisocyanate polyurethanes, nanocellulose and nanocomposites based on epoxy-rubber binders.
Novel nanotechnologies invented by prof. Figovsky were a base for establishing a few of industrial production in USA, Canada, China, Russia and Israel.
He is also the President of IAI (Israel), member of European Academy of Sciences, Foreign Members of two Russian Academies of Sciences (REA & RAACS), the chairman of the UNESCO chair “Green Chemistry”. For few of his inventions in nanotechnologies he received gold and silver medals at the IENA-98 (Nurnberg, Germany).
From 1999 he is the editor-in-chief of the journal “Scientific Israel – Technological Advantages”, from 2008 – of the “Open Corrosion Journal” and from 2010 the journal "Resent patents on Corrosion Science".
In 2006 he received the Gold Angel Prize at the “Genious-2006” exhibition and in 2007 NASA Nanotech Briefs®’ Nano 50™ Award, Prof. Figovsky had many times keynote lectures, including for National Investment Banking Association (see at: http://www.nibanet.org/Figovsky-slideshow.html
For last ten years prof. Figovsky was a chief scientific adviser for 3 investment institutions.
Prof. Figovsky is now Director R&D of US investment and transfer technology company “NanoTech Industries, Inc.” (see at: http://www.nanotechindustriesinc.com/index.php). Prof. Oleg L. Figovsky has more than 500 patents and has published and lectured extensively. He is one of authors of the Encyclopedia of Surface and Colloid Science, (http://www.dekker.com/sdek/issues~db=enc~content=t713172975)
Prof. Figovsky was elected as a Presidium member of Russian Nanotechnology Society (2008). During last a few of years prof. Figovsky carrying his reviews as an expert of Israeli Ministry of Industry & Trade (BASHAN program), European Committee (7 framework program) and RusNano (Russia). He is a honorary professor of Voronezh University (VGASU) and Kazan State National Research Technical University. In 2009 prof. Figovsky became the VIP-expert of Russian Foundation for small and middle business.
Web-site: http://figovsky.borfig.com/


О. Фиговский. Грядущая нано-революция: а готова ли к ней Россия?

Олег Фиговский, академик (EAS,PAACH, PUA),
Зав. кафедрой ЮНЕСКО «Зеленая химия»,
Главный редактор журнала SITA.                    

Грядущая нано-революция: а готова ли к ней Россия?

    Характеризуя состояние науки в России, президент Российской академии наук Юрий Осипов сказал, что наука в России, хоть и со скрипом, но развивается. По его мнению: «главная "болячка" российской науки – это её техническое обеспечение, без которого в современной фундаментальной науке серьёзных открытий ждать не приходится. Вторая проблема – скорость и полнота реализации научных открытий, разработок и технологий в промышленности, которую по-прежнему необходимо подталкивать к освоению новых производств».
    Академия наук, говорит Юрий Осипов, и сейчас опирается во многом на те достижения, которые были созданы задолго до распада Советского Союза, это же очевидно. Например, нанотехнологиями в академии наук занимаются уже более сорока лет. Просто сейчас оказалось, что на этом пути можно добиться многого в решении практических вопросов – но самой-то наукой в нанообласти, нанотехнологиями занимались в России, и не только в Академии наук, давным-давно! Да и вообще фундаментальные исследования позволяют сейчас ориентироваться в современных сложных проблемах, в решении практических вопросов. Это только кажется, что люди занимаются чисто теоретическими, абстрактными вещами. Но на деле они создают знания, которые, может быть, не сразу, но обязательно найдут большое применение. Поэтому любыми путями Россия должна сохранять тот пласт науки, который она смогла создать за несколько столетий.
   Грустно это как-то прозвучало, вероятно, ждать в ближайшее время научных открытий не приходится, и именно поэтому многие остро мыслящие российские ученые уезжают в научные центры других стран, и не только в Европу, США, Японию и Израиль, но и в развивающиеся страны, такие как Бразилия, Мексика и даже ЮАР.
   Петр Ильинский считает, что: «во-первых, не нужно предлагать какой-то одной панацеи – это путь ложный. Панацеи как не было, так и нет. И не будет. Во-вторых, ни в коем случае нельзя сводить разговор к созданию одного центра, одного нового университета, одной всеобъемлющей и чрезвычайной программы – такой путь еще менее перспективен. Не то чтобы такой центр или университет в принципе нельзя было создать, просто даже при самом лучшем исходе такого начинания в результате опять, по старой русской традиции, получится что-то замечательное, уникальное, единственное в своем роде. Науке же уже давно потребны изменения системные и постоянные, независящие от кампанейщины и политиканства.
    Самое главное – науку российскую нужно не реформировать, а интегрировать. В мировую, естественно. Попытка обязательно открыть что-то свое, на весь цивилизованный мир непохожее, столь же плоха, как желание досконально скопировать какую-то иноземную модель, пусть весьма эффективную. Особенно при нынешнем очень немаленьком зазоре между российской и западной наукой – и по общему уровню работ, и по  эффективности их отдачи для общества, и по размерам финансирования. Но есть и хорошая новость, очевидная для любого знатока научной истории – отставание российское вовсе не обречено быть вечным»,- говорит он.
   Наука необыкновенно демократична, наука не может жить без ниспровержения авторитетов, без появления «молодых волков», приходящих на смену закосневшим волкам матерым. Даже в весьма высокотехнологичных дисциплинах руководитель небольшой группы, затерянной в университете Южной Дакоты или центральной Финляндии, может в течение нескольких месяцев (тем более, двух-трех лет) сделать замечательную научную работу, которая тут же выдвинет его (её) в первые ряды кандидатов на самые престижные кафедры или награды. А не этого ли нужно современной российской науке: чтобы сегодняшние 20-летние студенты знали, что у них в 30-35 лет будет такой шанс – выполнить работу на высшем мировом уровне и пожать с нее соответствующие плоды? Поэтому задаваться надо не вопросом о том, не распустить ли Академию Наук, не превратить ли ее в министерство науки, не ввести ли грантовую систему, не запретить ли, не спонсировать ли, не поощрять ли? Вопрос проще, но значительнее – как сделать научные специальности в России социально и экономически состоятельными?
     Далее Петр Ильинский, в частности, предлагает, исключить из уравнения, регулирующего отношения между завлабом и собственником Института, Академию Наук – промежуточную инстанцию, давно пережившую те времена, когда от нее бывала польза. Институт должен или стать независимой организацией – как любая другая кампания – с наблюдательным советом, советом директоров, и платить государству за электроэнергию и проч. по рыночным ценам, или остаться в собственности государства, и поэтому одновременно получать от него льготы, но и зависеть в смысле условий финансирования, назначения директора и т.д.
   В заключении Петр Ильинский замечает, что «Российскую науку надо попросту открыть – не ограничивать ни таможней, ни взяточничеством, ни возможностью сотрудничества с любыми партнерами, внутри страны или за ее пределами, в том числе коммерческого (тогда и появятся российские производители любых реактивов, любой сверхсложной аппаратуры). Финансировать, конечно, науку нужно тоже, и постоянно. 30-летние российские таланты должны получать зарплаты, сравнимые с западными, или хотя бы иметь эту возможность в теории. Иначе Россия продолжит питать Запад, почти ничего не получая взамен.
    Напоследок нельзя удержаться от краткого комментария о судьбе Российской Академии наук. Лучше бы ее, конечно, распустить. Позорное, знаете ли, заведение, особенно в нынешнем формате. Над ним в мире уже даже не смеются – потому что забыли о существовании оного института (здесь – с маленькой буквы). Захочет – организуется снова, будет, как и положено, добровольной общественной организацией закрытого типа. Но еще лучше не трогать ее, как в том анекдоте, чтобы не нарушать ароматы природы, а просто забрать всю собственность и отменить денежное довольствие для будущих ее членов, сохранив нынешним (чтобы не бухтели о том, что их враги убивают). И вы будете удивлены, увидев лет через 15, насколько улучшится ее состав».
   И ведь такой опыт на территории постсоветского пространства есть – это опыт коренной реорганизации Академии наук Казахстана, где осознали, что руководящая академическая надстройка мешает процессу национальной науки, и перенесли в основном научные исследования в университеты, в том числе в университеты с преподаванием на иностранных языках и привлечением профессоров из-за рубежа. Это необходимо понять и принять, ибо судьба страны стала всецело зависеть от технологического прогресса, новейшую историю цивилизации принято условно делить на эпохи, отметившиеся взрывным ростом какой-либо технологии или научной отрасли.
   Игорь Харичев в своей статье «Успех дебилизации», опубликованной в февральском номере журнала «Знание – сила» пишет: «Можно говорить о крахе российской системы образования. А можно — об успехе процесса дебилизации страны. Разумеется, малообразованным, темным населением проще манипулировать. Чем меньше самостоятельных, творческих людей — того самого креативного класса, который хочет реальных изменений — тем проще власть предержащим управлять страной. Это азбучная истина. Вот только люди, которые мало что знают, ничем не интересуются, не умеют анализировать, понимать содержание текстов длиннее, чем полстранички, находить решение разных проблем, не могут не только стать опорой модернизации, но и помочь сохранить быстро устаревающие достижения, доставшиеся в наследство от СССР.
    Трудно поверить, что Путин хочет остаться в истории разрушителем российской экономики. Но уже сейчас ясно, что нам катастрофически не хватает квалифицированных инженеров, технологов, рабочих. Страна теряет остатки престижа: падают ракеты, плохо летают самолеты, тонут суда, большие проблемы с военной техникой, не говоря уже про бытовую, которую Россия практически полностью импортирует. Очень скоро мы наткнемся на нехватку ученых. Те неучи, которых в массе своей выпускает школа, ни на что не годятся. Никакой университет не подготовит из них высококлассных инженеров, пытливых исследователей. Интерес к подобному роду деятельности, как и базовые знания, получают в школе. Даже толковых юристов и менеджеров из них не получится. Потому что хорошие юристы и менеджеры не могут быть безграмотными».И делает вывод, что дальнейшую деградацию России уже не остановить.
    Известный футуролог и изобретатель Раймонд Курцвейл (Raymond Kurzweil) считает, что в ближайшие десятилетия человечество вновь ожидает очередная технологическая революция – на сей раз колоссальный сдвиг в жизни цивилизации будет обусловлен развитием нанотехнологий. «Нано-технологический век» (the Nanotech Age), по мнению Раймонда, должен наступить в период между 2025 и 2050 годом, ознаменовав своим приходом окончание современного, продолжающегося сейчас «Информационного века», который в свою очередь берет свое начало в конце 80-х годов прошлого столетия.
Грядущая Нано-Революция окажет на быт и деятельность людей столь же гигантское влияние, какое оказало на человечество в свое время так называемая «индустриальная революция» - с той лишь разницей, что будущий переход на качественно новый уровень произойдет, как отмечает автор прогноза, за несколько лет, тогда как для масштабного внедрения  индустриальных технологий понадобились десятилетия.
Важнейшим направлением в будущей нано-технологичной индустрии станет «молекулярное производство».  Мир постепенно приближается к открытию возможностей конструировать молекулы из отдельных атомов механико-химическим способом. Из полученных «искусственных» молекул впоследствии можно будет создавать практически любое вещество или продукцию. «Наниты» - крохотные универсальные строительные блоки-роботы – вероятно, станут основой всего, что будет окружать человека через несколько десятилетий: от пищи и химических препаратов (включая противогололедные реагенты) до баз на других планетах.
Аналитики Wall Street Journal рассмотрели, как пример, ситуацию в области перспективных аккумуляторов, которые обеспечат, чтобы сотовые телефоны смогут «жить» месяцами без зарядки, электромобили проезжать больше 800 км на одной подзарядке аккумуляторной батареи, а дома хранить достаточно энергии, получаемой от солнечных батарей или других альтернативных источников для того, чтобы отказаться от традиционной электроэнергетики.
    Ими были выделены пять сильных перспективных проектов, близких к коммерческой реализации:
- батареи, в которых вместо графитовых анодов используются кремниевые нанопровода диаметром 100 нм и длиной в несколько микрон.
Только недавно ученые из Южно-Калифорнийского университета доказали, что для воплощения данного проекта в коммерческий продукт не нужно пять или десять лет. Ученым удалось увеличить емкость батарей втрое и сократить время зарядки до 10 минут.
- батареи, в которых используются покрытые серой пористые углеродные нанопровода с электролитическими добавками.
   Ученые из Стэнфордского университета разработали новый тип анодов с кремниевых нанопроводов. Изначально ученые столкнулись с быстрым выходом батарей из строя по причине разрушения материала в результате расширения и сжатия во время перезарядки, но они нашли выход из ситуации путем покрытия пористых углеродных нанопроводов серой и улучшения другой составной Li-ion аккумуляторов (катода) электролитическими добавками. В результате емкость батарей удалось увеличить в четыре-пять раз.
- литий-воздушные батареи.
    Компания IBM в сотрудничестве с исследователями, государственными лабораториями и лидерами в отрасли работают над проектом Project 500. Компания IBM называет данные батареи литий-воздушными. Их работу можно описать следующим образом: вместо оксидов металла в позитивном электроде используется углерод, вступающий в реакцию с воздухом для создания электрического тока. Использование углерода делает батареи данного типа заметно легче по сравнению с графитовыми аналогами. По словам IBM, данные батареи позволят поставить электромобили в один ряд с бензиновыми авто, хотя на автомобильной индустрии их применение не закончится. По словам IBM, первый стабильный и полностью рабочий прототип батареи данного типа появится уже в этом году.
- батареи, в которых применены аноды из олова.
    Ученые из Вашингтонского университета разработали технологию, которая поможет утроить емкость Li-ion аккумуляторов, сократить время зарядки и продлить срок службы. Данная технология, которая была запатентована учеными под руководством профессора Гранта Нортона (Grant Norton), описана следующим образом: графитовые (карбоновые) электроды были заменены анодами из олова. Коммерческие Li-ion аккумуляторы, в которых применены аноды олова, с виду не отличаются от графитовых аналогов и не требуют дополнительных затрат на внесение изменений в конструкции устройств.
- батареи, в которых применены кристаллы магнетита из зубов моллюсков.
   Как я приводил в своих обзорах ранее, Дэвид  Кизайлус (David Kisailus) из Калифорнийского университета в Риверсайде установил, что идеальным материалом для создания дешевых наноматериалов, которые смогут в разы повысить эффективность солнечных элементов и литий-ионных батарей, является самый твердый биоминерал на Земле – магнетит. Примечательно то, что он содержится в зубах панцирного моллюска. Разработки Дэвида Кизайлуса смогут обеспечить производство более дешевых солнечных и литий-ионных батарей, на подзарядку которых будет уходить намного меньше времени.
    Интересно, что он выяснил, что моллюски из группы хитонов пользуются нанотехнологиями при создании новых зубов. И для этого им вовсе не нужны какие-то особые условия, а также много энергии. Ученый исследовал строение зубов у моллюска Cryptochiton stelleri, который является обычным жителем тихоокеанского побережья США. Он выяснил, что зубы радулы этого существа имеют покрытие из магнетита (FeO•Fe2O3), который, как мы знаем, является одним из самых твердых биоминералов. Исследователь проследил, каким образом образуется это покрытие.Процесс формирования нового зуба происходит в три этапа:
-сначала гидратированный оксид железа осаждается на волокноподобных хитиновых органических «заготовках»,
-потом из оксида образуется магнетит, а это, в свою очередь,
-приводит к изменению формы зуба, и он из весьма аморфного образования становится конусом с острой верхушкой.
   Самым интересным является то, что при образовании магнетита хитиновая основа изменяет свои свойства — рыхлый и пористый материал, связываясь с частичками покрытия, меняет свою структуру.
Но это еще не все — сам магнетит в процессе затвердевания зуба тоже упорядочивается.
   Ученые из университета штата Мериленд создали нанобумагу толщиной всего 10 нм. Этот материал может послужить хорошей основой для дешевой полупроводниковой электроники. Еще в 2008 году португальские ученые продемонстрировали миру пилотные экземпляры полевых транзисторов на основе бумаги. В новом методе обычный лист бумаги работает как диэлектрический слой в оксидном полевом транзисторе. Исследовательская группа университета Иллинойса (США) научилась превращать волокна целлюлозы в гальванические элементы.
    Сложностью применения бумаги являются неровности ее поверхности - для нормальной работы транзисторов разница между бугорками и впадинами не должна превышать нескольких сотен нанометров. Ученым из Мериленда удалось решить эту проблему, обработав целлюлозную массу окисляющими ферментами и очень плотно спрессовав ее механически. В результате получились бумажные пленки толщиной всего 10 нм, которые при этом почти прозрачны. Также такая нанобумага достаточно гибкая, что позволяет напечатать на ней многослойные электронные схемы. В данном случае первым стал базовый слой углеродных нанотрубок. Затем был нанесен слой диэлектрика, а на него - слой полупроводника. Последним стал второй слой нанотрубок. При тестировании транзистор показал прекрасную работу, причем сохранял 10% активности при небольшом изгибании.
    Профессор Кристофер Хатчинсон из Университета Монаша (Австралия) считает, что вместо того чтобы создавать материал и надеяться, что его структура и свойства не эволюционируют слишком сильно в течение срока эксплуатации, необходимо признать эволюционные изменения неизбежными и не бороться с ними, не избегать их, а с самого начала разрабатывать будущий материал так, чтобы эволюция протекала в направлении улучшения его свойств.
   Создавая подобные материалы уже сегодня, г-н Хатчинсон манипулирует атомами в стали и других сплавах, чтобы сделать их не только устойчивыми к стрессу, который вызывает постепенную деградацию обычных материалов, но и эволюционирующими под его действием в сторону повышения эксплуатационных характеристик. Манипуляции с отдельными атомами проводятся с помощью электронного микроскопа, а наблюдение за происходящими в момент прикладывания нагрузок микроструктурными изменениями осуществляются с привлечением аналитических приборов, установленных в синхротронных центрах в Австралии и Франции.
На практике применение таких материалов, к примеру, для производства крыла самолёта, приведёт вместо ожидаемой усталости металла от постоянных вибраций к его упрочнению и, следовательно, гораздо более долгому сроку безопасной эксплуатации.
   Другим интересным и не менее важным аспектом научной деятельности группы г-на Хатчинсона является разработка функциональных сплавов, способных, например, эффективно отталкивать воду без специальной дорогостоящей обработки. Это позволило бы избежать многочисленных проблем, которые связаны с возможным обледенением крыла, характерным для холодных стран (на деле пример не самый разумный, ведь самолётное крыло покрашено, а сделать краску ещё более водоотталкивающей куда проще, чем пытаться придать подобное свойство и без того перегруженному ответственностью конструкционному материалу).
    Небольшая трещина внутри металлического колеса привела к самой крупной железнодорожной катастрофе в современной Германии — крушению скоростного экспресса в 1998 году у Эшеде. Причина проста и печальна: при внешнем осмотре невозможно обнаружить внутреннее повреждение в металле. Вот почему учёные озадачились проблемой создания таких материалов, которые могли бы сами «подать знак» при возникновении «усталости».
   Результатом кропотливого труда сотрудников Университета Христиана Альбрехта (Германия) и их коллег стало создание новых синтетических материалов, способных рапортовать излучением света о слишком сильном механическом стрессе.
   Новым и интересным открытием немецких исследователей стала обнаруженная ими зависимость характеристики люминесценции таких нанокристаллов от величины механической нагрузки. Немного поразмыслив над практической ценностью своего наблюдения, учёные пришли к выводу, что это свойство может пригодиться для заблаговременного обнаружения повреждений, происходящих в структуре композиционных материалов из-за механических перегрузок.
    Для начала исследователи добавили тетраподы оксида цинка к силикону (полидиметилсилоксану) и изучили свойства нового продукта. Оказалось, что получившийся композит стал, с одной стороны, прочнее исходного силикона, а с другой — люминесцировал различными цветами при облучении УФ-светом, в зависимости от величины прикладываемой к материалу силы растяжения.
Композиционные полимерные материалы используются в самых разных областях, от внутричелюстных зубных имплантатов до космических кораблей. Они состоят из двух и более компонентов с различными свойствами. При желании можно создать материал, который будет лёгким, механически прочным и всё равно недорогим. По мнению немецких учёных, нанокристаллы оксида цинка улучшат многие специфические композиты, особенно конструкционные, где повышенная прочность и стабильность жизненно важны.
   Структура цеолитов гарантирует им каталитическую активность, что и вызывает интерес у химической промышленности. К сожалению, создание синтетических цеолитов, удовлетворяющих требованиям заказчика, совсем не простое дело. На этом фоне голландским учёным удалось открыть быстрый способ получения новых цеолитов.Цеолиты хорошо известны благодаря их повсеместному использованию в качестве водоумягчительных добавок в детергентах, а также промышленному применению в качестве катализаторов.
   Учёные из Леувенского католического университета (Нидерланды) и их коллеги из Гентского и Антверпенского университетов (оба — Бельгия), экспериментально показали возможность отрезания цеолитных строительных блоков с последующей их перестройкой с образованием новой структуры; если структуру цеолита проще всего представить как набор «сросшихся» блоков, то эти ученые научились разделять такие блоки.

   Специалисты IBM Research и сингапурского Института биоинженерии и нанотехнологий (Institute of Bioengineering and Nanotechnology, IBM) объявили о том, что их совместные усилия привели к созданию антимикробиологического материала, гидрогеля, способного проникнуть сквозь любую биологическую мембрану и при контакте уничтожить микроорганизмы, стойкие к антибиотикам и другим видам сильнодействующих лекарственных препаратов. Интересен тот факт, что разработка данного материала стала побочным эффектом от разработки новых технологий производства полупроводников, выполняемой специалистами компании IBM Research.

      В основе антимикробиологического гидрогеля лежит материал, который ученые с легкой руки назвали полимером-нинзя. Этот полимер представляет собой "раствор легких наноструктур, способных быстро перемещаться к инфицированным клеткам живого организма и быстро разрушить их вредное внутреннее содержимое. После этого наноструктуры разлагаются и исчезают, не вызывая разрушительных побочных эффектов и не скапливаясь во внутренних органах организма пациента".

     Когда гидрогель наносится на зараженную поверхность, положительный заряд наноструктур заставляет их сблизиться с клетками вредных микроорганизмов, на поверхности мембран которых скапливается отрицательный электрический заряд. Используя активные биологические компоненты, частицы гидрогеля разрывают клеточные мембраны микроорганизмов, нарушая их целостность и препятствуя их дальнейшей жизнедеятельности. На приведенном в начале изображении можно увидеть колонию микроорганизмов methicillin-resistant Staphylococcus aureus (MRSA) до и после воздействия антимикробиологического гидрогеля на основе полимера-нинзя. Из этой картины явно следует то, что такой материал является весьма действенным оружием против бактерий и микроорганизмов, выработавших иммунитет к лекарственным препаратам.

      Биоактивные частицы гидрогеля совершенно не вредят клеткам здоровой кожи и других тканей. Специалисты IBM Research считают, что таким материалом беспрепятственно можно покрывать поверхности внутри помещений медицинских учреждений, медицинские приборы и инструменты, поверхности имплантатов, стены и перегородки офисных и производственных помещений. Гидрогели с немного измененным составом могут использоваться в качестве протирочных материалов, составов для инъекций и входит в состав средств личной гигиены в качестве дезинфицирующего средства.
  Как продемонстрировали исследователи из Венского технологического университета, недавно открытый класс материалов может быть использован для создания нового типа солнечных батарей.
  Новый материал, представляющий собой гетеро-структуру из нескольких одноатомных слоев оксидов материалов и обладающий за счет этого совершенно новыми свойствами, в последние годы особенно тщательно изучается в научной среде. Одно из этих свойств гетеро-структур привлекло внимание венских ученых, которые считают, что благодаря ему появится возможность производить более эффективные солнечные элементы.
    Оксиды, использованные учеными для создания материала, являются фактически изоляторами. Но при объединении двух соответствующих типов изоляторов наблюдается удивительный и очень важный эффект: поверхности материала становятся металлическими и проводят электрический ток. Это позволяет извлекать электроны и создавать электрический ток без применения дополнительных электрических проводов, как это делается, к примеру, в кремниевых солнечных элементах – эти провода блокируют часть попадающего на элемент солнечного света.
   В настоящее время венские ученые ищут наиболее эффективные комбинации материалов, которые максимально поглощали бы видимую часть спектра. В исследовании также принимают участие ученые из Национальной лаборатории Оакриджа, США, и Вюрцбургского университета, Германия. В ближайшем будущем в Вюрцбурге планируется построить опытный образец солнечного элемента на основе «слоистого» материала и начать его тестирование.
  Исследователи из Южной Кореи внедрили электропроводный полимер в тонкое термоэлектрическое устройство, которое может генерировать электроэнергию за счет различия температур кончиков ваших пальцев и окружающей среды.
  Исследователи из группы Ёнкьюн Кима (Eunkyoung Kim) оптимизировали процесс полимеризации и электрохимические оксилительно-восстановительные процессы, позволяющие получить электропроводные полимеры материалы с хорошей электропроводностью и хорошими термоэлектрическими свойствами на основе поли(3,4-этилендиокситиофена) (PEDOT). Коэффициент мощности некоторых таких материалов составляет 1260 мкВт м-1 К-2.    Этот коэффициент мощности в четыре раза выше параметра, о котором ранее сообщал Хавьер Криспин (Xavier Crispin) [2], также изучавших органические термоэлектрические материалы. Криспин восхищен результатами Кима, отмечая, что результаты южнокорейского исследователя говорят о том, что электропроводные полимеры становятся такими же эффективными термоэлектрическими материалами, как рекордсмены – сплавы теллуридов висмута и сурьмы.
   Ким с коллегами продемонстрировали еще одну уникальную особенность органических термоэлектрических материалов, в выгодную сторону отличающую их от неорганики – материалы на основе поли(3,4-этилендиокситиофена) обладают механической гибкостью, что позволяет в перспективе создать гибкий термоэлектрический генератор, который может быть интегрирован в текстиль и одежду.
  Широко используемые наночастицы через сточные воды могут попасть в еду, а затем в наши организмы. Последствие этого процесса пока непредсказуемы. Неприятное открытие было сделано в ходе нового исследования, проведенного на двух синхротронах мирового класса: SLAC National Accelerator Laboratory в Калифорнии и Европейского фонда синхротронного излучения ESRF в Гренобле, Франция.
   Теперь ученые точно знают, что два из наиболее широко используемых типов наночастиц накапливаются в соевых бобах, которые, например, в США занимают второе место в качестве ключевой продовольственной культуры после кукурузы.
  Результаты экспериментов свидетельствуют, что наночастицы оксида цинка и диоксида церия могут легко попасть на реальные поля, пройти по пищевой цепи и, возможно, вызывать негативные последствия для здоровья человека.Оксид цинка и диоксид церия широко используются в косметике, в частности в лосьонах и солнцезащитных кремах. Ученые опасаются, что через канализацию, осадки и ветер наночастицы могут попасть на фермерские поля, а затем и в пищу. При этом эксперименты показывают, что наночастицы не биотрансформируются в соевых бобах, а, значит, попадают в следующие поколения сои, постепенно увеличивая свою концентрацию.
    Эти исследования еще более остро ставят проблемы как проведения санитарно-гигиенических исследований, так и разработки экологически безопасных нанотехнологий.
Тематика экологически безопасных (Environment Friendly) промышленных нанотехнологий является основной тематикой исследований Международного нанотехнологического исследовательского центра «Polymate» (Израиль), создавшего долее 10 таких нанотехнологий, защищенных патентами США (6.120.904; 6.294.265; 6.960.619; 7.232.877; 7.820.779; 7.989.541; 7.989.553; 8.209.902; 8.268.391), Израиля (190.262) и России (2.408.552). В настоящее время INRC «Polymate» ведет совместные исследования с учеными университетов Казахстана, России, Бельгии и Польши в этой области, что важно для воспитания современных молодых ученых в области нанотехнологий. Результаты этих исследований легли в основу книги «Advanced Polymer Concretes and Compounds»  (авторы O. Figovsky, D. Beylin), выходящей в этом году в издательстве СRC Press (Taylor & Francis Group).

По мотивам NanoIsrael-2012 (обзор)

По мотивам NanoIsrael-2012
(обзор)

Проф. Олег Фиговский, академик Европейской академии наук, главный редактор журналов SITA и RPCS

  Только что прошла международная конференция «NanoIsrael-2012», которая показала значительные успехи Израиля как в фундаментальных исследованиях в сфере нанотехнологий, так и в создании реальных инновационных производств в этой области промышленности. Одним из основных спонсоров конференции было и Роснано, которое представило информацию о развитии наноиндустрии в России. Однако при значительно меньших инвестициях, тем более за счет государства, аналогичная израильская структура в области нанотехнологий – INNI достигла весьма внушительного прогресса. INNI представила диаграммы (см. рис. 1 и 2), которые дают представление о всех промышленных фирмах страны и направлениях их производств.
  Так, например, компания Polymate Ltd. разработала несколько новейших нанотехнологий, защищенных более 10 патентами США, Европы и Канады. В частности, основано промышленное производство наноструктурированных неизоцианатных полиуретанов, не использующее токсичные изоцианаты ни в одной из стадий технологического процесса. Неизоцианатные полиуретаны получают по реакции олигомерных циклокарбонатов, в т.ч. на основе растительных масел, и олигомерных первичных аминов. Такие полиуретаны обладают высокой прочностью, ударо- и износостойкостью, а также гидролитической стабильностью. Этой же компанией разработана оригинальная технология наноармирования твердых материалов (металлов, полимеров, керамики) уникальным методом суперглубокого проникновения.
  Группа ученых под руководством Итамара Виллнера (Itamar Willner) из Еврейского университета в Иерусалиме (Израиль) искала способы создания источников питания на базе фотосистемы II, для работы которых не требовался какой-либо химический компонент (углекислый газ, катализатор), разрушающийся в процессе использования.
Виллнер и его коллеги решили эту проблему при помощи двух "природных" компонентов на полюсах батарейки. Анод – отрицательный полюс устройства – изготовлялся следующим образом. Сначала ученые вырастили колонию сине-зеленых бактерий Mastigocladus laminosus и извлекли молекулы фотосинтезирующих белков из их клеток. Затем физики изготовили небольшой золотой электрод, поверхность которого была покрыта специальным полимером и к свободным "хвостам" которого прикреплялись молекулы фотосистемы II. Этот полимер исполнял сразу две функции – он удерживал молекулы фотосистемы на месте и являлся "проводом", по которому свободные электроны перетекали на золотой электрод. Положительный полюс – катод – был изготовлен из стеклоуглерода, поверхность которого была покрыта углеродными нанотрубками и ферментом билирубин оксидазой. Это вещество захватывает свободные электроны и использует их для превращения свободного кислорода в молекулы воды.

 

Рис. 1. Израильские компании в области нанотехнологий, направления – материаловедение; инструментальные методы исследования



Рис. 2. Израильские компании в области нанотехнологий, направления – биотехнология; электроника и фотоника; фильтрация и мембранные технологии

Как объясняют физики, такая реакция препятствует улетучиванию кислорода, который извлекается из молекул воды на аноде.
  Исследователи из Тель-Авивского университета создали оригинальные белковые транзисторы, используя комбинации крови, молока и белков на различной материальной базе и заставив молекулы самоорганизовываться, создавая полупроводниковые пленки на нано-уровне. Каждый из трех различных белков принес нечто уникальное на стол, сказал аспирант Илад Ментович, что позволило команде создать полноценную электрическую цепь с оптическими возможностями. Способность белка крови поглощать кислород обеспечило легирование полупроводника определенными химическими веществами для создания особых свойств. Молочные протеины, которые могут похвастаться впечатляющей стойкостью в трудных условиях, были использованы для формирования волокон, которые являются строительными блоками транзисторов. В то же время белки слизистой оболочки, содержащие красный, зеленый и синий флуоресцентные красители, были использованы для создания белого свечения, необходимого для продвинутой оптики. Воспользовавшись природными способности каждого белка, исследователи смогли проконтролировать различные характеристики транзистора, включая изменение проводимости, сохранение информации и флуоресценцию. Исследовательская группа, в которую также входят аспиранты Нетта Хендлер и Богдан Белгородский, под руководством д-ра Шахара Рихтера и профессора Майкла Гозина, полагает, что их новый транзистор может сыграть большую роль в переходе от эпохи кремния к эпохе углерода.
  Новый высокопрочный эпоксидный адгезив был разработан израильскими исследователями института им. Вейцмана и института Шенкар. Под руководством проф. Решефа Тенне было показано, что введение фуллереноподобных наночастиц сульфида вольфрама даже в количестве 0,5% увеличивает адгезионную прочность конструкционных эпоксидных клеев более, чем в 2 раза. Такие наноструктурированные клеи найдут широкое применение в аэрокосмической технике.
  Ярослав Уржумов, профессор университета Дюка (США), выпускник московского физтеха разработал метаматериал для усиления магнитных полей. Магнитно-активный метаматериал может уменьшить величину тока, необходимого для создания достаточно сильного магнитного поля. Это позволит снизить паразитические электрические поля в окружающей среде и создать мощные и безопасные электромагнитные системы. Исследователи провели численное моделирование и установили, что макроскопические объекты, построенные из метаматериалов с отрицательной магнитной проницаемостью, при ряде условий способны увеличивать магнитные силы в низкочастотных полях. Это явление физики назвали магнитостатический поверхностный резонанс (MSR). Учёные говорят, что по своему принципу он похож на плазмонный поверхностный резонанс в оптике, наблюдающийся в материалах с отрицательной диэлектрической проницаемостью.
Авторы смоделировали метаматериал с очень высокой анизотропией: в нём магнитная проницаемость отрицательна в одном направлении, но положительна во всех других. Расчёт показал, что такой объект способен за счёт резонанса резко усиливать магнитное поле. «Явление MSR может позволить магнитным системам левитации увеличить массу поднимаемых объектов на порядок при использовании такого же количества электроэнергии», – заявил Уржумов. Подобное необычное управление электромагнитными силами вполне может пригодиться и в других устройствах – от крохотных оптических пинцетов, удерживающих атомы, до экзотического электромагнитного оружия.
  Группе физиков под руководством Кирилла Болотина из Университета Вандербильда удалось установить причину низкой электронной мобильности в графене. Исследователи помещали слой графена на специальную подложку с позолоченными электродами и измеряли скорость движения электронов при погружении пленки в различные среды. Было установлено, что чем больше вещество, окружающее пленку графена, экранирует электрическое поле, тем быстрее движутся электроны в самом графене. Максимальную электрическую мобильность 60 000 см2/(В•с) графен показал, когда был погружен в анизол. Благодаря полученным результатам у исследователей появился не только рецепт увеличения электронной мобильности, но они также получили ответ на вопрос о том, почему её значение у реального графена всегда ниже теоретически возможного. Теоретически, графен должен иметь электронную мобильность, превосходящую почти все известные материалы. Но в процессе получения материал оказывается загрязнен примесями, которые несут электрический заряд. Их, наряду со складками поверхности, подозревали физики, когда искали причину низкой электронной мобильности. До работы группы Болотина подозрения оставались теоретическими, но теперь получили экспериментальное подтверждение.
  Как показали последние исследования ученых из США, нанопровода из нитрида иридия галлия, выращенные на массивах кремниевых проводов, позволяют создать идеальные фотоаноды для расщепления воды при помощи солнечного света. В ходе экспериментов было обнаружено, что плотность фототока в таких структурах в пять раз выше, чем в массивах нанопроводов нитрида иридия галлия, выращенных на плоском образце кремния. Сотрудники совместной научной группы из University of California и Lawrence Berkeley National Lab (США) впервые смогли получить монокристаллические нанопровода из нитрида иридия галлия еще в 2007 году. Уже тогда они обнаружили, что, в зависимости от концентрации иридия, такие нанопровода имеют запрещенную зону в диапазоне от 1 до 3,3 эВ. А вот последняя работа научной группы показала, что, благодаря небольшой ширине этой запрещенной зоны (которую можно настроить для покрытия наиболее широкой части спектра солнечного излучения и оптимального поглощения солнечного света), подобные нанопровода могут использоваться в качестве эффективных фотоанодов для расщепления воды при помощи солнечной энергии. Однако упомянутые наноструктуры имеют большую площадь поверхности, таким образом, электроды должны быть оснащены большим количеством катализатора для запуска химической реакции расщепления воды. В рамках своих экспериментов группа ученых выращивала сложные структуры из кремния и нитрида иридия галлия при помощи покрытия кремния с примесями n-типа нанопроводами из нитрида иридия галлия, а также последующего «обжига» полученных структур при высоких температурах. Измерения фототока через созданную структуру показало, что в такой конфигурации он увеличивается в пять раз, по сравнению с массивами нанопроводов нитрида иридия галлия, выращенными на плоской поверхности кремния.
  Исследователи из Германии создали молекулярный нанопереключатель, который обратимо и неоднократно может быть активирован для контроля химической реакции. Работа предлагает подходы к созданию молекулярных машин, способных обмениваться информацией друг с другом, а также дает возможности контроля сложных каскадных реакций с помощью простого химического переключателя. Микаэлю Шмиттелю (Michael Schmittel) с коллегами из Университета Зигена удалось синтезировать нанопереключатель, работающий подобно молекулярному механизму активации и дезактивации фермента протеинкиназы, вовлеченного в работу мозга – кальций/калмодулин-зависимой протеинкиназы II [calcium/calmodulin-dependent protein kinase II (CaMKII)]. Шмиттель поясняет, что сложные молекулярные машины, работающие внутри нашего организма, чаще всего представляют собой сложные нанопереключатели, способные обмениваться информацией друг с другом. Он подчеркивает, что для воспроизводимой двухсторонней коммуникации обратимая работа обеих молекулярных машин как в прямом, так и в обратном направлении должна характеризоваться высокой степенью предсказуемости. Разработанный исследователями из Германии нанопереключатель отличается простой, но при этом достаточно многоцелевой архитектурой – молекула треугольной формы может быть активирована и дезактивирована у одной из вершин. В этой вершины сходятся два функциональных фрагмента, которые, связываясь друг с другом, приводят к проявлению молекулой каталитической активности (это соответствует активированному состоянию системы). При разъединении фрагментов активность исчезает, и это состояние отвечает дезактивированному состоянию системы. В течение ближайших лет стоит ждать существенного прогресса в применении молекулярных машин для химического синтеза.
  Инженеры из Арканзасского университета и Университета Юты (США) создали новый метод получения наночастиц и наноплёнок, которые могли бы пригодиться в производстве электроники завтрашнего дня, в биосенсорах и определённых типах микроскопов, используемых в научных изысканиях. Технология, основанная на уникальном химическом процессе, позволила получить наночастицы золота на кремниевой подложке, отличающиеся сверхмалыми размерами, высокой плотностью и управляемой равномерностью распределения по поверхности. Специальная техника напыления обеспечивает быстрое покрытие хрупких, а также внутренних поверхностей, обладающих объёмом, при комнатных температуре и давлении, причём без необходимости использования проводящих субстратов или сложного (дорогого) оборудования. Подход, продемонстрированный американскими исследователями, заключается в кардинальном улучшении широко применяемого метода нанесения атомарных плёнок из раствора на активированные оловом поверхности. В данной случае использовался новый метод непрерывного напыления, за которым последовал нагрев нанесённых атомов для придания отдельным «островкам» наноразмерного материала желаемой формы. В результате были получены сферические наночастицы с размерами от 5 до 300 нм. Причём размер наночастиц полностью контролируется условиями проводимого эксперимента. Вначале подложка покрывается плёнкой серебра, на которую наносятся микрокапли раствора, содержащего золотые квасцы вида Na3Au(SO3)2 – прекурсора для золотых наночастиц. Далее происходит гальваническое замещение менее благородного металла, серебра, атомами (агрегирующими затем в наночастицы) золота. Покрытия изучались микроскопическими и спектроскопическими методами анализа. Было показано, что новые ультратонкие плёнки являются более гладкими, чем традиционные покрытия, полученные испарением-осаждением золота – а значит, могут обладать лучшими оптическими свойствами, такими как, например, уменьшенное рассеяние на нерегулярностях поверхности.
  Американские ученые создали особый штамм бактерий из рода Ralstonia, которые поглощают углекислый газ и перерабатывают его в бутанол и другие простые спирты, которые можно использовать в качестве биотоплива. Группа биохимиков под руководством Джеймса Ляо (James Liao) из университета штата Калифорния в Лос-Анжелесе проводила опыты с различными штаммами бактерии Ralstonia eutropha. Эта бацилла относится к особому классу бактерий, которые могут питаться водородом и не нуждаются в кислороде или в других особых условиях среды для выживания. Ферменты из семейства гидрогеназ – окислителей водорода – являются ключевым элементом микроба для его выживания. Ляо и его коллеги вставили в геном Ralstonia eutropha несколько генов, заставляющих ее превращать излишки энергии в бутанол и другие органические спирты. Осталось найти надежный и безопасный источник водорода – использование чистого водорода было бы крайне опасным занятием, так как любая утечка может обернуться мощнейшим взрывом. Ученые воспользовались тем, что бактерия умеет использовать молекулы муравьиной кислоты в качестве источника водорода. Ralstonia eutropha поглощает молекулы кислоты, расщепляет ее на молекулу водорода и углекислого газа и использует первую как «топливо», а вторую – в качестве «стройматериалов» клетки. При этом муравьиную кислоту достаточно легко получить, если одновременно пропускать через воду углекислый газ и электрический ток. Биохимики проверили работу бактериальной «мануфактуры», поместив колонию бактерий в сосуд, через который пропускался электрический ток и углекислый газ. К разочарованию ученых, ток блокировал рост колонии, так как в жидкости постоянно появлялись токсичные для микробов пероксид водорода, оксид азота и атомарный кислород. Исследователи решили эту проблему, обернув анод – отрицательный полюс устройства – тонким слоем пористой керамики. Керамическая «чаша» действовала как частично проницаемая мембрана, пропускающая молекулы муравьиной кислоты и препятствующая «побегу» токсичных соединений. По оценкам Ляо и его коллег, такая конструкция позволяет колонии расти, вырабатывает приемлемое количество биотоплива и может применяться для получения биотоплива из электричества, вырабатываемого солнечными батареями, ветряками и другими возобновляемыми источниками энергии.
  Научная группа под руководством Такао Сомея и Цуйоси Секитани из Токийского университета (Япония) представила то, что она называет первым в мире гибким органическим транзистором, способным выдерживать высокотемпературный процесс стерилизации. Исследователи ожидают, что новый транзистор будет использоваться для производства медицинских приборов, включая имплантируемые устройства и катетеры небольшого размера. Наиболее выдающееся свойство нового транзистора – то, что он не деградирует даже после 20-минутной термической обработки при 150 ˚C, что является нормой для медицинского процесса стерилизации. Подвижность носителей заряда в этом транзисторе составляет 1,2 см²/В•с до стерилизации и 1,0 см²/В•с – после. Кроме того, поскольку изделие изготовлено из органического полимера, нанесённого на гибкую органическую подложку, вся конструкция может быть изогнута, а её рабочее напряжение составляет всего 2 В. Транзистор изготовлен на основе органического полупроводника динафтол[2,3-b:2’,3’-f]тиено[3,2-b]тиофена (DNTT). Диэлектрический запирающий слой получен методом самосборки (self-assembled monolayer, SAM) молекул октадецилфосфоновой кислоты на подложке из оксида алюминия. Для предотвращения испарения DNTT во время стерилизации был несколько изменён традиционный метод корпусировки транзистора. В данном случае использовались два покрывающих слоя – плёнка органического полимера и плёнка металла.
  Таким образом, удалось достичь:
•высокой механической гибкости, что позволяет использовать материал в «живых» организмах;
•рабочего напряжения, достаточно низкого для применения в теле человека;
•резкого уменьшения риска инфекции благодаря возможности проведения стандартной стерилизации, что позволяет рекомендовать новый транзистор для немедленного использования в имплантируемых медицинских устройствах.

  Очень хотелось бы увеличить число прорывных работ в области нанотехнологий в России, а не только экспортировать российских ученых в зарубежные университеты.

Нанотехнологии и их развитие в мире и в России как зеркала технологического будущего

Нанотехнологии и их развитие в мире и в России как зеркала технологического будущего
                                                                  Олег Фиговский, академик

По мере развития нанотехнологий увеличиваются и объемы массово выпускаемой продукции на их базе. Это электронные устройства на базе графена и нанотрубок, дисплеи, антенны и аккумуляторы, пищевые продукты, лекарства, одежда. Ведущие государства находятся в состоянии своего рода гонки нанотехнологии, ведь преимущества инноваций очевидны, а создавать свое гораздо дешевле, чем покупать чужое, тем более что никто не станет делиться самыми передовыми технологиями, а лишь втридорога продавать то, что уже освоено. Руководства России в последние годы неоднократно заявляло о том, что делает ставку на высокие технологии, В частности, сейчас создается научно-технический центр в Сколково. Время для того, чтобы занять место под солнцем на рынке нанотехнологий, еще не упущено окончательно, научный потенциал России находится не в глубоком нокауте, как порой представляется. Следует отметить, что именно развитие промышленного внедрения нанотехнологий и есть то, чего сейчас не хватает России, то есть, образно говоря, в бизнесе нет спроса на науку. Однако президент  Нанотехнологического общества России доктор технических наук В.А. Быков указал в ходе онлайн-конференции, что в настоящее время в России технологии вплотную приблизились к возможности промышленной реализации. «Накопилась некая критическая масса знаний, – объясняет ученый, – из которых уже можно спланировать реальный производственный бизнес с окупаемостью в разумные  сроки. Это основа для серьезных  государственных инвестиций».

     Недавно проведенные социологические исследования показали, что жизнью в России довольны две категории людей: те, кто не в курсе, и те, кто в доле, 68% россиян с доходами выше среднего по стране хотели бы, чтобы их дети учились и работали за границей. 37% хотят, чтобы их дети жили за границей постоянно. И это вызывает вопрос, а кто будет создавать инновационные технологии и, прежде всего, нанотехнологии.

     Сегодня Россия занимает меньше 2% в мировом ВВП. Основными статьями экспорта (по данным ФТС) является газ и нефть (70%), первичные металлы (15%), круглый лес (10%), все остальное, включая оборудование, вооружение и технологии – менее 5%. Сексуальные услуги стали в нынешней России чуть ли не второй занятостью, а более 60% российских женщин вообще не видят смысла в интимных отношениях с партнером, если не получают от них материальных выгод.
   В рейтинге Doing business, определяющим удобство ведения бизнеса, за последний год Россия упала сразу на 7 позиций, заняв 123-е место из 183-х возможных. В рейтинге восприятия коррупции страна откатилась на десятилетие назад, став 154-й  –  примерно на уровне с Таджикистаном, Папуа новой Гвинеей, Конго и Камбоджей. За последние 20 лет число общеобразовательных школ в России сократилось на 19 тысяч. Россия вошла в десятку самых опасных стран  мира для инвестиций. По мнению Political Risk Atlas 2011, Россия входит в число стран с “чрезвычайно высокими» политическими рисками т самой нестабильной бизнес средой. 1,5% населения РФ владеет 50% национальных богатств. По данным ЦСИ  «Росгосстраха», в России годовой доход более $1 млн у 160.000 человек, годовой доход более $100.000 имеют 440.000 семей. 92% крупной российской промышленности, банков и пр. – это иностранная собственность. Только в банках Швейцарии находится около $25 млрд российского происхождения. На 30.000 питерских бездомных приходится менее трехсот мест в ночлежках. Всего в России насчитывается 101 миллиардер с совокупным капиталом в $432,7 млрд. Российские миллиардеры платят самые низкие в мире налоги (13%), которые не снились их коллегам  во Франции и Швеции (57%), в Дании (61%) или Италии (66%). Только в России налог на дивиденды по акциями ниже подоходного, всего каких-то 9%.

     По оценке аналитиков  Массачусетского кризисного центра, контролировать нынешнюю территорию России населением менее 50 млн. человек невозможно чисто физически,  т.к. расчетная плотность населения, в этом случае, составит менее 2,9 человек на квадратный километр. (Плотность населения США составляет 26,97 человек на квадратный километр). Учитывая все вышеизложенное, несложно предположить, что России может отказаться в этой ситуации уже через 3-5 лет. По прогнозу известного эксперта-политолога Збигнева Бжезинского, Россия, как единое государство, прекратит свое существование. Причиной станет полный износ промышленного оборудования, электроэнергетики и жилищно-коммунальной сферы, массовая безработица, а также падение цен на нефть и, как следствие, неисполнение бюджета. Россия, скорее всего, распадется в ближайшие годы на 6-8 государств. Новые государства станут зоной нестабильности и будут разделены на сферы влияния мировых лидеров, Об этом говорится в докладе ведущих аналитических центров, который размещен на сайте ЦРУ США.

   Вышеприведенные данные, опубликованные  агентством РиФ 25 января 2012 года, безусловно не бесспорны, но заставляют еще раз задуматься над вопросом, кто и как будет осуществлять технологическую модернизацию России и кто будет разрабатывать и осваивать новейшие нанотехнологии, которые создаются в мире со все нарастающей скоростью.
      Все более увеличивается интенсивность новых разработок в мире, которые  захватывают все отрасли народного хозяйства. Так, американские ученые сделали новый шаг в технологию печатной электроники. Группа исследователей из Йельского университета разработали универсальную методику создания композитных материалов из одностенных углеродных нанотрубок (УНТ) и различных функциональных полимеров.
   По способу, предложенному исследовательской группой во главе с Ли Сяокаем (Li Xiaokai) сначала изготавливается раствор нанотрубок в карбоксиметилцеллюлозе. Он в избытке наносится на перемещающуюся подложку, с которой излишки раствора механически удаляются при прохождении препятствия – цилиндрического вала со спиральной насечкой. При этом от размера вала и насечки значительно зависит толщина получаемого покрытия. Карбоксиметилцеллюлоза удаляется в свою очередь в сою очередь посредством кислотной обработки, и на стеклянной подложке остается покрытие из углеродных нанотрубок. После на него наносится необходимый полимер, который заполняет полости углеродного покрытия.  Все полученные покрытия по своим свойствам не уступают, а зачастую и превосходят аналоги. Кроме того, ученые утверждают, что их технология идеально подходит для создания гибких проводящих материалов (полученное проводящее покрытие можно отделить от стеклянной подложки), а значит, способна вытеснить общераспространенные в органических светоизлучающих диодах и фотоэлементах покрытия на основе ИТО-стекла (стекла, покрытого проводящим оксидом индия и олова). Таким образом, предложенная методика позволяет легко и сравнительно дешево получать композитные материалы для энергосберегающих технологий. Кроме того, она может быть масштабирована до промышленного производства и легко изменена для работы с новыми полимерами в зависимости от возникающих потребностей.

   Американские специалисты по строительным материалам пытаются создать самовосстанавливающий бетон с помощью биоминерализации. Споры бактерий, естественным образом вырабатывающих карбонат кальция, будут помещаться в бетонную смесь т активироваться при образовании трещин. «Бетон в основном сопротивлением растяжению и сильным – сжатию, –  поясняет соавтор исследований Парамита Мондаль из Иллинойского университета в Урбане и Шампейне. – Люди пытались справиться с этой проблемой на протяжении многих лет разными способами. Самым  распространенным решением стало укрепление бетона стальной арматурой, но трещины все равно появляются». В природе бактерии, вырабатывающие карбонат кальция, играют важную роль в формировании карбонатных пород и отложений – например, известняка. Осталось найти такой вид, который будет активным в бетоне, то есть в условиях высокой щелочности и низкого уровня кислорода. В данном случае ученые первыми опробовали Bacillus pasteurii – непатогенные микроорганизмы, обычно встречающиеся в почве. Специалисты показали, что при оптимальных условиях эти бактерии способны образовывать известняковые отложения. «Тогда мы добавили их вместе с питательными веществами в цемент, – рассказывает г-жа Мондал. – И получили такие же отложения. Химический анализ засвидетельствовал, что это все тот же карбонат кальция». В конце концов, группа исследователей надеется показать, что после введения этих микроорганизмов в бетон во время смешения они образуют споры или входят в спящий режим, попадая в высокощелочную  среду. Как только образуется трещина, уровень рН в ней должен упасть в результате контакта поверхности материала с воздухом. Снижение рН, а также приток кислорода и углекислого газа в трещину разбудит микроорганизмы и обеспечит им благоприятные условия для роста. Постепенно произведенными ими карбонат кальция заполнит трещину, подача кислорода и углекислого газа будет прервана, и бактерии снова заснут – до следующего раза. Ранее свой вариант заделывания трещин в бетоне с помощью бактериального клея предложили британские ученые.

     Традиционные методы диагностики прочности больших конструкций сложны, требуют уйму времени, серьезного оборудования, высококвалифицированного персонала, а потому  безмерно дороги. Прикладная наука не стоит на месте, что демонстрируют исследователи из Университета Стратклайд (Глазго, Шотландия), работающие над новым способом такого рода испытаний. Всем будет заниматься почти обычная краска, которая поможет выявить на ранней стадии микроскопические дефекты в конструктивных элементах ветряков, шахтных опор, мостов и пр. К ней лишь нужно присоединить активные электроды, и тогда никакие микротрещины, могущие со временем перерасти в дефекты, которые погубят всю конструкцию, не страшны. Во всяком случае, на это рассчитывает д-р Мохамуд Саафи, возглавляющий факультет гражданского строительства вуза. По его словам, развитие технологии «умной краски» далеко продвинет индустрию неразрушающего контроля крупномасштабных сооружений и объектов.
   При производстве краски используется зольная пыль (отходы сжигания угля) и относительно недорогие высокоупорядоченные углеродные нанотрубки. В готовом виде краска по физическим свойствам похожа на цемент, поэтому ее можно применять в агрессивных средах, там, глее погодные условия затрудняют обычные методы. Мониторинг осуществляется через сеть беспроводных датчиков, к которым «подключена» чудо-краска. Сенсоры при поступлении к ним тока подают сигнал о наличии микротрещин, например, в бетонном фундаменте. Г-н Саафи согласен с тем, что технология не позволяет иметь постоянный доступ к некоторым внутренним элементам конструкции, но все же она способна осуществлять общий мониторинг сооружения. По данным исследователей, стоимость подобного метода контроля прочности сооружений не превысит 1% от того, во что обходятся современные технологии с их многочисленным оборудованием.

     Группа ученых, финансируемая Управлением по атомной энергетике Министерства энергетики США, разработала новый материал, способный удалять радиоактивные материалы из отработанного ядерного топлива. В будущем металлорганические  структуры (MOF) смогут эффективно удалять летучие радиоактивные газы из отработанного ядерного топлива и таким образом сделать ядерную энергетику более безопасной и экологически чистой. Кроме того, появится возможность очищать от радиоактивных материалов аварийные ядерные реакторы. Отработанное ядерное топливо может перерабатываться с целью восстановления расщепляющих материалов и создания свежего топлива для атомных электростанций. Такие страны, как Франция, Россия и Индия, активно занимаются подобной переработкой, которая, к тому же, уменьшает объем высокоактивных отходов.

   Одной из основных проблем переработки является удаление и изоляция радиоактивных компонентов, которые не могут повторно использоваться в качестве топлива. Ученые сосредоточили внимание на удалении йода, изотопы которого имеют огромный период полураспада – 16 миллионов лет. Исследователи изучили различные известные материалы, в том числе серебряный цеолит – кристаллический, пористый минерал с большой площадью поверхности и высокой механической, термической и химической стабильностью. Особая структура цеолита при добавлении серебра позволяет захватить и удалить радиоактивный йод из  отработанного ядерного топлива. Однако, серебро стоит дорого и само по себе загрязняет окружающую среду, поэтому ученые попытались создать материал, работающий как цеолит, но без серебра. В итоге была создана металлорганическая структура ZIF-8. MOF является кристаллическим пористым материалом, в котором металлический центр связан с органическими молекулами в процессе химического синтеза. Белый порошок MOF изготавливается из относительно дешевых  коммерчески доступных веществ, позволяет эффективно удалять радиоактивный йод и помещать его в стеклянные  контейнеры для длительного хранения.

    Группа под руководством Константина Новоселова (университет Манчестера) смогла нейтрализовать основное препятствие на пути к графеновой микроэлектронике – высокие токи утечки в транзисторах, вставив пленки графена в «сэндвич» из тончайших листов нитрида бора или дисульфида молибдена. Максимальная производительность обычных кремниевых интегральных схем и их графеновых «наследников»  ограничивается так называемыми токами утечки – «несанкционированным» движением электродов через транзисторы в выключенном состоянии. Утеска электронов генерирует энергию и вынуждает инженеров увеличивать напряжение тока, что еще раз усиливает нагрев микросхемы. Дальнейшая миниатюризация кремниевых транзисторов крайне затруднена из-за роста токов утечки. Лауреаты Нобелевской премии Новоселов, Гемм и их коллеги использовали графен в качестве электрода в так называемом «туннельном транзисторе»  – одной из разновидностей обычных полевых транзисторов. В качестве подложки физики использовали классический диоксид кремния, к которому они прикрепили пластинку из специального диэлектрика – нитрида бора или сульфида молибдена. Затем к диэлектрику прикрепляется слой графена, поверх него укладывался новый слой изолятора, следующий металлический или графеновый электрод и последний слой диэлектрика.
     Как объясняют ученые, в этом устройстве ток движется из одного слоя графена к другому под воздействием электрического поля, которое блокирует, или способствует «просачиванию» электронов через пластинки нитрида бора или дисульфида молибдена. Такая конструкция в сочетании с высокоэффективным диэлектриком позволяет избавиться  от высоких токов утечки в состоянии покоя. По оценкам исследователей, отношение тока в транзисторе в «включенном»  и «выключенном» состоянии составляет 10 тысяч к одному, что открывает перспективы по созданию высокочастотной и высокопроизводительной графеновой электроники.
  Ученые из университета Райса применили наночастицы для повышения термальных свойств трансформаторного масла. Исследователи создали масло на основе наночастиц, которое может существенно повысить теплопотери таких устройств, как электрические трансформаторы и микроэлектронные компоненты, что позволит повысить эффективность трансформаторных масел на 80% рентабельным и безвредным для окружающей среды способом. Группа ученых, возглавляемая Хаймэ Таха-Теджерина и постдокторантом Тарангатту Нараянан, сосредоточила усилия на трансформаторах энергетических систем. Трансформаторы заполнены минеральными маслами, которые охлаждают и изолируют внутренние обмотки, чтобы избежать короткого замыкания. Ученые обнаружили, что совсем чуть-чуть шестиугольных частиц нитрида бора (h-BN) – двухмерных кузенов углеродного графена, очень эффективно избавляют системы от высоких температуры. «Нам не требуется много этих частиц, ведь даже 0,1% от всего масла увеличивает его эффективность на 80%», сказал Нараянан. «Если их будет всего 0,01%, то и в этом случае эффективность масла повысится на 9%», добавил Таха-Титжерина. «Изоляционные свойства масла при этом совсем не пострадают».

   Создавая новые наноматериалы, в том числе, кремы для лица, солнцезащитные средства, ткани и пищевые добавки, не следует забывать о рисках. Национальный исследовательский совет США призвал провести незамедлительное расследование, дабы установить, безопасны ли  такие продукты. Совет готов инвестировать дополнительные 24 миллиона долларов  в год. Этой суммы должно хватить на то, дабы получить информацию о наночастицах, уже применяемых в индустрии. Однако, не стоит забывать о том, что остаются наноматериалы нового поколения, которые должны появится на рынке в ближайшие 10 лет. В свою очередь, Центры по контролю и профилактике заболеваний подчеркивают: есть все основания полагать, что наночастицы способны проникать через кожу или дыхательную систему, мигрируя в другие органы.

   В последние годы удалось разработать несколько путей, позволяющие серьезно утончить фотоячейки, используя вспомогательные структуры с размером, не превышающим длину волны видимого света. «Главная цель – найти пути применения столь малого количества материала для абсорбции света», – уверен адъюнкт-профессор Стэнфордского университета (США) Шанхай Фан. Высокоэффективные материалы, такие как полупроводники на основе оксидов элементов III-IV групп, а также кристаллический кремний, очень дороги. В случае других материалов, например аморфного кремния, цена может быть не столь критична, но несущие заряд электроны и дырки не успевают пройти достаточное расстояние, прежде  чем «потеряться» в виде тепла. Очевидно, что чем тоньше будет рабочая среда, тем легче носители заряда достигнут его границ. При этом, чем тоньше солнечная батарея, тем выше вероятность того, что фотон пройдет сквозь нее, не успев абсорбироваться.
   Коммерчески доступные батареи на кристаллическом кремнии могу иметь толщину около 180 мкм. В то же время рынок уже высказывает серьезный спрос на 50 мкм. Поэтому, не размениваясь по мелочам, лаборатория г-на Фана взяла курс сразу на создание солнечных батарей толщиной в 1-2 мкм. В теории специальные методики, такие как нанесение случайных текстур на поверхность фотоячеек, способны в 50 раз увеличить уровень абсорбции света ввиду изменение углов прохождения фотонов сквозь ячейку. При этом методы нанофотоники могут улучшить этот показатель еще в 10 раз. Один из таких методов – плазмоника. Фотоны, сталкиваясь с небольшими металлическими структурами, могут образовывать плазмоны, коллективные колебания свободного электронного газа в металле. Эффект способен резко увеличить рассеяние света внутри батареи, увеличивая вероятность того,  что фотон все-таки будет абсорбирован. Вивиан Ферри, аспирантка Калифорнийского технологического университета (США), сообщила, что ее группа создает плазмоны, используя полусферические выпуклости на контактах солнечной батареи (90 мкм) из аморфного кремния. Г-жа Ферри утверждает, что такой наноструктурированный продукт производит на 15% больше тока, чем коммерческая солнечная батарея той же площади, покрытая случайными текстурами.
    Еще один любопытный нанофотонный трюк заключается в использовании фотонных кристаллов для создания рефлектора. Благодаря периодическому изменению коэффициента преломления фотонные кристаллы позволяют получить разрешенные и запрещенные зоны для фотоном с разной энергией. Другими словами, такой кристалл способен выполнять функцию оптического фильтра или рефлектора. При попадании на него фотона с длиной волны, которая не соответствует разрешенной зоне, фотон не может распространяться в кристалле и отражается обратно (в рефлектор). Миро Зееман, глава исследовательской группы фотонных материалов и приборов Делфтского технологического университета (Нидерланды), рассказал, что его группа разместила фотонные рефлекторы  как в середине батареи, так и на ее задней стороне. Постоянные переотражение света на рефлекторах приводят к световым колебаниям внутри кремния, многократно повышая вероятность конвертации фотонов света в электрический ток. Другая фотоно-кристаллическая схема базируется на использовании микрометровых структур кристаллического кремния, слой которого может быть затем легко соединен со слоем аморфного кремния. По словам Оунси Эль-Дейфа, исследователя из микроэлектронного центра IMEC в Леувене (Бельгия), теоретически такой  фотоно-кристаллический слой способен увеличить эффективность абсорбции фотонов до 37%.

       Совсем недавно, Джон Занг (John Zhang), ученый из университета Саутгемптона, и его коллеги выдвинули предположение, что свет может приводить к проявлению более сильных сил и взаимодействий. Это станет возможным за счет использования метаматериалов, которые преломляют свет особым образом и используют его некоторые другие свойства. Фотоны света, падающие на поверхность такого метаматериала, возбуждают колебания электронов, которые формируют на поверхности материала облака свободных электронов, так называемые плазмоны. Эти плазмоны имеют крошечные размеры, исчисляемые нанометрами, что сопоставимо с длиной волны видимого света. Если материал, на поверхности которого находится большое количество возбужденных плазмонов, соприкасается с поверхностью другого материала, неважно какого, диэлектрика или токопроводящего, плазмоны начинают взаимодействовать с электронами другого материала, при этом возникает резонансный эффект и две поверхности, метаматериала и другого материала, буквально склеиваются  между собой.
   Как и у других колебательных процессов, у плазмонов есть свои резонансные частоты. Когда метаматериал освещается светом с частотой, совпадающей с резонансной частотой плазмонов, возникающие адгезионные силы имеют наибольшее значение. Фактически эти силы напрямую зависят от интенсивности и частоты падающего света. «Эти силы могут обеспечить более сильное взаимодействие, нежели силы радиационного давления и силы Казимира. Благодаря этому становится возможной реализация механизма адгезии и прилипания, подобного механизму пальцев конечности геккона, а интенсивности излучения в несколько десятков нВ/мкм2 уже достаточно для преодоления гравитации Земли» – говорят ученые. Сила адгезии, индуцируемая метаматериалом, является совершенно  видом сил, она может быть включена или отключена просто включением или выключением источника света. А практических применений у таких сил найдется весьма и весьма немало. Поднятие и перемещение нанообъектов, создание материалов с меняющимися под воздействием света оптическими и механическими свойствами, и даже реализация перчаток, с помощью которых можно перемещаться по вертикальной поверхности подобно человеку-пауку.

  В Национальном исследовательском фонде Корее сообщили, что новая лазерная технология была создана в университете Сеула, а произведенная лазерная  установка может работать с очень высокой степенью точности, сам же лазер работает в субмиллиметровом диапазоне. Новый трехмерный генератор лазера сейчас активно тестируется для создания сверхтонких лучей. Ученые говорят, что на основе таких сверхтонких, быстрых и очень тонких лучей в будущем можно создать коммуникационные элементы узлов компьютеров, а также в еще более отдаленной перспективе и квантовые компьютеры.
   Концепция оптических компьютеров предусматривает, что подобные машины будут использовать фотоны в видимом или в инфракрасном световом диапазоне для процессинга данных, тогда как современные системы работают на базе электрических сигналов. Так как свет в электронных компонентах не испытывает сопротивления (точнее оно крайне мало), тогда как электричество его испытывает, оптические компьютеры смогут обеспечивать и передавать информацию почти в 10 раз быстрее. Более того, оптические компьютеры могут обойтись без проводов, так как все коммуникационные  системы также будут работать за чет сверхбыстрых световых фотонов. Сообщается, что в основе южнокорейской разработки находятся так называемые поверхностные плазмоны и тончайшее серебряное напыление.

     На днях специалисты IBM рассказали о том, что ими был создан и опробован транзистор, в основе которого располагалась одна единственная нанотрубка длиной 9 нанометров. Новое устройство показало отменные характеристики, позволившие заговорить о долгожданной замене кремниевым транзисторам. «Наши результаты показали, что у нанотрубок не просто есть соответствующий потенциал, они могут соперничать с кремнием», – говорит профессор Джон Роджерс (John Rogers) из университета Иллинойса.
   Чтобы узнать, как размер нанотрубки влияет на производительность устройства, Роджерс, Аарон Франклин (Aaron Franklin) и их коллеги создали несколько транзисторов разных размеров. Чтобы на результаты исследования не повлияла разница в отдельных нанотрубках, ученые расположили все транзисторы на поверхности одной. Для этого на слой непроводящего материала инженеры поместили нанотрубку, на концах которой в ходе двухступенчатого процесса  были закреплены контакты. Опыты показали, что нанотрубочный транзистор потребляет гораздо меньше энергии, чем его «коллеги» того же размера (достаточно напряжения 0,5 вольта). Кроме того, новое устройство может пропускать в четыре раза больше тока.
  Компания Tilera, производитель многоядерных специализированных процессоров, известна еще и тем, что в 2009 году анонсировала прототип 64-битного 100-ядерного процессора. По всей видимости, специалистам компании потребовались эти два года для того, что бы отработать технологию и подготовится к массовому выпуску микропроцессоров, которые они сами называют процессорами 21-го века. И совсем недавно представители компании Tilera объявили о начале производства своих процессоров Tile-Gx, правда в несколько урезанном варианте, пока только с 16 и 36 вычислительными ядрами, хотя их архитектура допускает возможность использования 100 ядер. Новые чипы, изготавливаемые по 40-нм технологии, Tile-Gx16  и Tile-Gx36выпускались в очень ограниченных количествах, начиная с сентября месяца прошлого года. К настоящему моменту в активах компании Tiler состоят более 80 клиентов, которые используют процессоры Tile-Gx в серверах обрабатывающих  одновременно большое количество транзакций.
    Процессор Tile-Gx36, работающий на тактовой частоте  1,2 ГГц, обеспечивает скорость обработки и передачи информации на уровне 40 гигабит в секунду, потребляя при этом 25 Ватт энергии. С точки зрения отношения единицы потребляемой мощности на единицу производительности, процессорам Tile-Gx сейчас нет равных, и они являются идеальными кандидатами на создание систем распределенных облачных вычислений. А процессор Tile-Gx36, работающий  на частоте CoreMark преодолел планку в 165276 баллов, оставив позади весьма неслабые системы других известных производителей. Работают системы на базе процессоров Tile-Gx  под управлением специализированной мультизадачной операционной системы, созданной на базе SMP Linux. Поэтому со стороны программной поддержки таких систем никаких проблем не возникает. В настоящее время под эту систему портировано более 2000 приложений, среди которых такие востребованные приложения, как Apache, MySQL  и многие другие. Компания Tilera планирует немного позже  выпустить на рынок процессоры Tile-Gx16 и Tile-Gx36, работающие на тактовых частотах 1 и 1,4 ГГц, а процессоры Tile-Gx со 100 ядрами должны появиться на рынке к концу этого года.

          Объединенная группа физиков из Университета Райса (США) и Осакского университета (Япония) изготовила практически идеальный терагерцевый поляризатор на основе нанотрубок. «Хорошие терагерцевые излучатели и детекторы у нас уже есть, – говорит Дзюнъитиро Коно (Junichiro Kono), руководитель лаборатории Университета Райса, в которой был создан новый поляризатор. – Не хватает только устройства для манипулирования излучением, и именно эту проблему мы и пытались решить». Первый вариант поляризатора на основе упорядоченного массива однослойных углеродных нанотрубок ученые испытали в 2009-м, получив обнадеживающие, но все же далекие от идеала результаты. «Когда направление поляризации терагерцевой волны было перпендикулярно оси нанотрубок, никакого ослабления излучения не отмечалось, – вспоминает г-н Коно. – Однако, в случае «параллельной» поляризации пропускание не снижалось до нуля, оставаясь на уровне 30-50 процентов».
    Способ устранения этого недостатка был очевиден: требовалось увеличить толщину поляризатора. В конструкцию новой версии поляризатора входят сразу три установленных друг за другом упорядоченных массива нанотрубок, размещенных на сапфировых подложках. При испытаниях на эту структуру направлялось терагерцевое излучение, полученное с помощью фемтосекундного титан-сапфирового лазера и нелинейного кристалла теллурида цинка, в котором реализуется эффект оптического выпрямления. Как оказалось, относительно простое и надежное трехслойное устройство обеспечивает степень поляризации в 99,9% в интервале частот от ~  0,4 до 2,2 ТГц. В этой же области оно имеет коэффициент экстинкции (отношение мощности излучения, прошедшего через настроенный на пропускание поляризатор, к мощности, измеренной в случае максимального ослабления), равный ~ 30 дБ.

   Новая  технология опреснения обещает невысокие энергетические затраты в сравнении с дистилляцией, а также отсутствие головной боли с постоянно загрязняющимися и выходящими из строя мембранами, используемыми при обратном осмосе. Ученые из Стэнфорда (Stanford University) и Рурского университета  (Ruhr-Universität Bochum) придумали  устройство, которое опресняет морскую воду за счет циклического процесса насыщения ионами и освобождения от ионов специальных электродов, погруженных в воду. Новый аппарат состоит из двух электродов. Положительный представляет собой набор наностержней Na2-XMn5O10. Отрицательный электрод – серебряный (Ag/AgCl). Эти пластины способны накапливать в себе ионы натрия и хлора соответственно. Работает устройство следующим образом. Заряженные электроды, которые не содержат мобильных ионов натрия и хлора, погружаются в морскую воду. Постоянный ток удаляет ионы из раствора и переносит их в электроды. Чистая вода отводится и снова заменяется морской. Электроды перезаряжаются, выпуская ионы. Морская вода превращается в концентрированный рассол. Рассол отводится и заменяется морской водой. Установка готова к новому циклу. В своей работе команда сообщает об энергопотреблении новой установки в 0,29 Вт-ч/л при удалении 25% соли. «Опреснительная батарея имеет простую конструкцию, использует подручные материалы, энергоэффективна, работает при комнатной температуре, с меньшей коррозией, чем существующие технологии опреснения  воды, и она потенциально может быть избирательна на ионам  Na+ и  CL– , что положит конец необходимости в реминерализации»,– сообщают авторы разработки.

     Новая физическая форма белков, разработанная учеными Техасского университета в Остине (The University of Texas at Austin), может значительно усовершенствовать методы лечения рака и других заболеваний, решив одну из основных проблем современной медицины – как быстро, безопасно и эффективно доставить лекарственный препарат в организм пациента. Стратегию получения белковых препаратов, разработанную преподавателями и студентами Школы инженерии Кокрелла (Cockrell School of  Engineering) при Техасском университете в Остине, с полным правом можно назвать беспрецедентной: предлагаемый учеными новый универсальный подход к доставке лекарств способен произвести революцию в лечении рака, артрита и инфекционных заболеваний. Американские ученые представили новую физическую форму белков, в которой молекулы упаковываются в высококонцентрированные  наноразмерные кластеры (от50 до 300 нм), легко проходящие через иглу.
     Ключевой успех пришел к ученым в 2004 году, когда профессор химической инженерии Томас Траскетт (Thomas Truskett) предположил, что растворы основанных на белках препаратов будут стабильны в ультравысоких концентрациях. В то время профессор химической инженерии Кит Джонстон (Keith Johnston) уже работал с наночастицами концентрированного стабильного белка, но не знал, как получить дисперсии, пригодные для инъекций. В 2009 году ученым удалось получить белковые нанокластеры в воде при помощи корректировки рН (чтобы снизить белковый заряд) и добавления сахара (трегалозы), собирающего вместе молекулы белка. Вскоре был совершен и еще один прорыв: инженер-химик Брайан Вилсон (Brian Wilson) получил прозрачную дисперсию чрезвычайно концентрированного белка, которая, как позже было установлено, была образована нанокластерами.
    Как показали биологические и биохимические анализы, при разбавлении дисперсии in vitro или подкожной инъекции мышам нанокластеры распадаются на отдельные конформационно стабильные белковые мономеры, полностью сохраняющие биологическую активность. При попадании в кровь белки использованных в экспериментах дисперсий моноканальных антител 1В7, поликлонального овечьего иммуноглобулина G и бычьего сывороточного альбумина (с концентрацией до 260 мг/мл) адресно атакует клетки и опухоли. При этом фармококинетика дисперсий неотличима от таковой стандартных растворов этих белков, используемых для внутривенного введения. «Эта общая физическая концепция образования высококонцентрированных, но стабильных белковых дисперсий является одним из основных новых направлений в науке о белках», – поясняет профессор Джонстон, член Национальной инженерной академии США. «Мы считаем, что открытие новой высококонцентрированной формы белков – кластеров из отдельных белковых молекул – это инновация, способная изменить то, как мы боремся болезнями». Со времени начала исследований в 2004 году Бюро по коммерциализации технологий Техасского университета в Остине подало три заявки на получение патентов.
   Исследователи успешно превратили насекомых, обычных тараканов, в живые топливные элементы, внедрив электроды в тело. В конечном счете, это позволит таким насекомым переносить на себе миниатюрное контрольное и передающее оборудование, которое приводится в действие электричеством, вырабатываем телами этих насекомых. Те продукты, которые употребляют люди, расщепляются до уровня глюкозы, которая переносится  с кровью и является топливом для мускулатуры, мозга и других тканей. Еда насекомых расщепляется до более простого вида сахара – трегалозы. Внедренный в тело насекомого положительный электрод, анод, изготовленный из материала-катализатора, расщепляет трегалозу в крови насекомых на более простые соединения, при этой электрохимической реакции вырабатываются свободные электроны, который создают электрический потенциал между анодом и катодом, вторым электродом.
    «Такой биотопливный элемент использует те продукты, которыми питается само  насекомое» – рассказывает Даниэль Шерсон, ученый-химик из университета Кливленда (Case Western Reserve University in Cleveland). Тараканы с внедренными электродами, т.е. превращенные в биологически-активные элементы, вели себя точно так же, как и до имплантации электродов, только их аппетит возрастал пропорционально количеству снимаемой с электродов энергии. Каждый таракан смог вырабатывать электрический потенциал напряжением 0,2 вольта, это эквивалентно одной десятой потенциала батарейки ААА. Но этой энергии уже достаточно, чтобы передать информацию на расстояние пять сантиметров беспроводным методом.  
   Бурые водоросли обычно игнорируются как источник горючего, поскольку содержащиеся в них сахара трудно поддаются ферментации. Преобразованные кишечные палочки «научились» напрямую конвертировать бурые водоросли в этанол, притом с хорошей эффективностью. В перспективе это достижение позволит перенести задачу получения сырья для биотоплива от наземных ферм к морским. Исследователи из калифорнийской компании Bio Architecture Lab «научили» бактерии преобразовывать нужным людям образом  полисахарид альгиновую кислоту (альгинат), в большом количестве содержащуюся в водорослях.
   Биологи из  Bio Architecture Lab воспользовались собственным открытием. Они идентифицировали у вибриона Vibrio splendidus  солидный фрагмент ДНК длиной 36 тысяч пар оснований, который отвечает за синтез ферментов, необходимых для транспорта и метаболизма данных олигомеров. Новые ферменты помогают преобразованному микробу переправлять разрозненные кусочки бывшего полисахарида внутрь клетки. Другие гены от V. Splendidus заставляет клетку выполнить целую цепь химических реакций. И как финальный штрих – еще заимствованные гены, на этот раз от бактерии Zymomonas mobilis. Они окончательно превращают промежуточные вещества в этанол.
      Авторы работы сообщают, что выход спирта по весу составил 0,281 от массы сухих водорослей и что это эквивалентно примерно 80% от максимально теоретически производства этанола из сахара, содержащегося в макроводорослях. Он отмечают, что бурые водоросли не содержат лигнин, а потому их сахара могут быть освобождены при помощи простой перемолки биомассы. Еще плюс – культивирование водорослей не требует пахотных земель. Удобрений, пресной воды и не ставит людей перед дилеммой – отдавать выращенные растения на топливо или использовать как пищу. Исходя из возможного темпа роста водорослей и КПД преобразования их в жидкое топливо, авторы технологии оценивают возможную производительность морских ферм как 19 тысяч литров этанола с гектара в год. А это примерно вдвое больше, чем соответствующий показатель для сахарного тростника, и в 5 раз выше, чем кукурузы.

     Исследовательская группа университета Пердью под руководством профессора Стивена Сана (Steven Son) разработала новый тип двухкомпонентного смесевого ракетного топлива, получившего наименование ALICE. В новом смесевом топливе горючим является нанопорошок алюминия размером около 80 нм в поперечнике. Вода является окислителем. В процессе горения алюминия и льда образуется в основном водород и оксид алюминия. Хранение топлива в виде льда позволяет обеспечить стабильность во времени, а также безопасность и нетоксичность нового вида топлива. Случайная инициация горения практически исключается – чтобы ALICE начала гореть, необходимо использовать небольшой стандартный твердотопливный двигатель, инициирующий реакцию горения. Энергетические характеристики топлива ALICE могут быть существенно улучшены, и по этому показателю «ледяное» топливо может превзойти используемые сейчас виды ракетного топлива.
   Антибактериальные свойства меди известны издревле. Но использовать медь в текстильной промышленности первым придумал израильтянин Джеф Габай. Его интимикробное постельное белье сегодня рекламируется по всем телеканалам США. Если умнешь в «медной» постели, утверждает реклама, то проснешься молодым и здоровым. «В такую ткань вплетен настоящий  натуральный оксид меди, который при реакции с водой, а наше тело состоит из воды, выделяет ионы меди»,– рассказывает глава фирмы Cupron Scientific Джеф Габай. Новая ткань, по словам ее разработчиков, настоящее чудо гигиены. Ионы меди убивают все вредные бактерии, все вирусы  и защищают кожу лучше любой кольчуги. Самостерилизующийся  текстиль теперь на вооружении спецслужб США. В будущем  году израильский старт-ап, по согласованию с армией, переоденет и своих солдат. Несколько десятков тысяч пар «медных» носков уже в пути.

   Как видно из вышеприведенных примеров новейших нанотехнологий, их разработки ведутся, в основном, в США, где сложился дефицит ученых и инженеров. В связи с этим Барак Обама готов предоставлять американское гражданство не только иностранным ученым и специалистам, но и тем иностранцам, которые просто получили американское образование – инженерное, научное или бизнес-образование. Обещание американского гражданства, которое прозвучало в ежегодном обращении Обамы, создает реальную альтернативу для массы российских школьников и абитуриентов. Если раньше на гражданство США  в основном могли претендовать лучшие ученые и специалисты, то теперь оно может стать доступным для значительно более широкой группы российской молодежи. В связи с этим утечка рабочих кадров из России вполне может увеличиться. И противопоставить новому «кровопусканию» власти могут в основном апелляции к чувству патриотизма.
   К эмиграции ученых и специалистов из России в ближайшее время может добавить мощный отток вчерашних школьников, которые готовы претендовать на работу в США, в том числе и по востребованным техническим специальностям. После нового обращения Барака Обамы Америка может дать иностранным абитуриентам зеленый свет в вопросах получения гражданства и, вероятно, гарантировать рабочие места.
     Не секрет, что Америка всегда была «пылесосом» для высококлассных специалистов и перспективных научных сотрудников. Именно на Америку возлагали основную вину за утечку мозгов из России, Индии, ЮАР, некоторых азиатских стран. Интерес Штатов к талантливым и перспективным иностранцам – не новость. Новость же состоит в том, что теперь Америка концентрирует свое внимание не только на уже состоявшихся и зарекомендовавших себя специалистах, но и на абитуриентах и школьниках, которым пока только предстоит получить необходимое образование. Вполне логично, что такая инициатива Обамы может нанести серьезный удар по тем странам, которые не в состоянии на протяжении многих лет остановить утечку мозгов. К таким странам относится и Россия.
    «Что бы ни говорили об инновациях и поддержке науки президент и правительство, не будем заблуждаться: средств на развитие науки и образование в РФ не хватает. Поддержка одаренных школьников и студентов со стороны государства явно не достаточна. Поэтому сейчас в России стало непрестижно поступать на факультеты, связанные с наукоемкими отраслями»,– комментирует начальник аналитического отдела Московского фондового центра Екатерина Кондрашова. Если иммиграционная реформа Обамы будет реализована, утечка мозгов из РФ может ускориться, ведь «получить образование, гражданство в США и возможность развивать свой бизнес – довольно перспективная альтернатива российскому образованию».
   Российские власти противопоставить этой тенденции не могут практически ничего, кроме чувства патриотизма. Так, премьер Владимир Путин на встрече со студентами Томского политехнического университета заявил о том, что государство не будет препятствовать выезду молодых кадров за границу, так как это выбор каждого конкретного гражданина. Об этом же сказал президент Дмитрий Медведев на встрече со студентами факультета журналистики МГУ им. М.В.Ломоносова: «Если есть желание уехать – езжайте». Медведев сообщил, что и у него была возможность уехать за границу и делать там юридическую карьеру, однако он остался в России, так как хотел работать в своей стране, «со всеми ее издержками, проблемами, недостатками».
      Сколько бы ни говорил Медведев про модернизацию, – с какой радости кому-то этой модернизацией заниматься, если модернизация подразумевает это самое повышение производительности труда, а, следовательно, увольнение огромного числа людей, которые заняты в производстве, пусть даже неэффективном. Ясно, что это приведет к большим социальным трудностям. Так что, пока можно не делать эту модернизацию, система не будет ее делать. Но при этом все будут говорить о ней, о том, что ею надо заниматься, что модернизация – это хорошо, это здорово. Слово красивое, а то, что это мучительная процедура, связанная с ущемлением огромного количества влиятельных интересов, об этом как-то предпочитают не говорить и не думать.
   Весьма странно, что практически не используется опыт Китая, который направляет студентов учиться за границу за счет государства и они, в соответствии с правовыми нормами, возвращаются работать в свою страну. И еще более удивительно, что Россия не использует возможность инженерного и экономического образования в Израиле, ведь израильские университеты высоко котируются в мировых рейтингах и имеют возможность провести обучение как на английском, так и на русском языках. Как явный просчет руководства России следует отметить и полное отсутствие представителей Израильской научной и технической элиты в числе ученых, получивших мегагранты по руководству научными проектами в университетах России.        
       
Приложение
Число статей ученых из стран большой восьмерки, стран БРИК, ряда активно развивающихся азиатских стран, а также ряда среднеразвитых европейских стран тысяч штук (по данным Web of Science)

Новейшие нанотехнологии

Новейшие нанотехнологии

Академик  О.Фиговский (NTI,  Inc., USA)

Опережающее развитие нанотехнологий в мире связано с такими областями ее применения  как микроэлектроника, специальные материалы, энергетика и военная техника.

Прогресс в микроэлектронике идет очень быстро, и с каждым годом количество транзисторов в микросхемах растет, а техпроцесс их изготовления становится все тоньше. Роль кремния, которую он длительное время играл в качестве основного сырья для получения полупроводников, приближается к своему логическому завершению. Это связано с тем, что толщина слоя кремния не может быть менее 2 нм, и дальнейшая миниатюризация приведет к химической реакции, вызывающей нарушение электрических свойств. Один из новых материалов для замены кремния является сульфид молибдена.

   Специалисты из Лаборатории наноструктур и наноэлектроники   Политехнического университета Яуизиамы  создали прототип микросхемы из молибденита, которая продемонстрировала его существенное превосходство над кремнием. Молибденитовые транзисторы показали отличную стабильность работы при толщине слоя материала всего в три атома. Такая толщина дает трехкратное итоговое уменьшение полупроводника в размерах, в сравнении с кремниевым аналогом. Кроме того, процессоры из молибденита потребляют меньше электричества, и, в силу особенностей его структуры, является пластичным. Такие полупроводники не уступают графеновым, а их усиливающие свойства  позволят создавать электронику с очень сложной структурой. Остается ждать.

  Норвежская компания  Thinfilm Electronics и исследовательский центр Xerox в Пало-Альто  (PARC) продемонстрировали рабочий прототип первой в мире печатной энергозависимой памяти, схема адресации которой содержит комплементарные органические цепи. Исследователи смогли объединить технологию ферроэлектрической полимерной памяти Thinfilm, предусматривающую формирование ячеек методом печати, и транзисторную технологию PARC,  основанную на применении комплементарных пар транзисторов n-типа и р-типа для формирования цепей и получили «органический эквивалент» КМОП - микросхем. Представленные образцы памяти Thinfilm Addressable Memory не могут обеспечить высокое быстродействие и емкость, их достоинства в другом: они обладают гибкостью и низкой себестоимостью производства. Ученые считают, что разработанная методика приближает эру «Интернета вещей» (Internet-of-Things), где каждый предмет имеет собственный IP-адрес  и подключен к Сети через «умные метки» (Start Tag).

     Исследователи из Калифорнии, руководимые Хосмосом Галацисом (Hosmas Galatsis) разработали метод изготовления печатных транзисторов  из углеродных нанотрубок  и использовали эти транзисторы для включения и выключения органических светоизлучающих диодов [organic light emitting diode (OLED)]. В соответствии с результатами исследований печатные транзисторы из углеродных нанотрубок должны стать дешевле своих кремниевых аналогов, представляя при этом более эффективную управляющую систему для дисплеев на основе светоизлучающих диодов.

  Для получения этих транзисторов исследователи первоначально напечатали на подложке из оксида кремния электроды стока, истока и затвора из серебра. Затем размести между электродами 98-% суспензию одностенных  углеродных нанотрубок.  После полного испарения растворителя на нанотрубки  был нанесен второй слой серебра, таким образом, был получен обратносмещенный полевой транзистор. При значительной локализации положительного заряда на управляющем электроде (электроде затвора) его электрическое поле заставляет электроны нанотрубок покидать энергетическую зону проводимости, ток между электродами стока и истока прекращается, что  выключает связанный с транзистором органический светоизлучающий диод. Однако если на управляющем электроде накапливается отрицательный заряд, электроны возвращаются в зону проводимости и ток, протекающий между электродами стока и истока, включает органический светоизлучающий диод. Нанесение на внешнюю сторону углеродных  нанотрубок   полиэтилениминового слоя, содержащего LiClO4  позволяет организовать работу полевого транзистора с переходом верхнего затвора. Галацис отмечает, что проникновение полимера внутрь нанотрубок позволяет обеспечить более эффективный контроль тока, протекающего через транзистор и управляемые им элементы схемы.

    Эско Кауппинен (Esko Kauppinen) из Университета Аалто (Финляндия) отмечает, что продемонстрированная возможность организации транзистора с переходом верхнего затвора из углеродных нанотрубок лишает новую систему наиболее значительного преимущества  - высокой подвижности электронов, необходимой для обеспечения протекания высокой силы тока – подвижность электронов в  обратносмещенных полевых  транзисторах в 40 раз выше, чем в транзисторах в переходом внешнего затвора.

    Команда ученых из Технического университета Мюнхена (Technische Universitaet Muenchen)  объявила о создании того, что в недалеком будущем станет основой электронных устройств, способных общаться напрямую с человеческим мозгом. Ученые создали матрицу из транзисторов на основе графена,  которые совместимы с живыми тканями, могут производить съем и запись электрический сигналов, вырабатываемых процессами, протекающими в клетках живых организмов. Графеновые пленки легко наносить на гибкие основания и его можно производить достаточно дешево в промышленных масштабах. Исследователи из Мюнхена начали с того, что изготовили матрицу из 16 графеновых полевых транзисторов (grapheme solution-gated field-effect transistor, G-SGAET). Графеновая пленка была осаждена из паровой фазы на поверхность медной фольги, затем, используя обычный метод фотолитографии и травления, были получены все элементы электрической схемы. После этого поверх созданной транзисторной матрицы ученые вырастили слой живых клеток, клеток тканей, подобной ткани сердечной мышцы. Изменения в химической и электрической составляющей окружающей среды  в районе затворов полевых транзисторов были преобразованы в изменения электрического тока, протекающего через транзистор.

   Исследователи обнаружили, что эти сигналы биологического происхождения весьма легко отделить от шумов и помех. Дальнейшие исследования ученых направлены на уменьшение уровня собственных шумов, создаваемых графеновыми транзисторами. Это позволит еще более точно выделять сигналы биологического происхождения и использовать их в других целях. Так же идет доработка технологии изготовления графеновых транзисторов для того, что бы матрицы из них можно было создавать на подложках из гибких полимерных материалов, используемых для изготовления имплантов. Немецкие ученые работают совместно с учеными из парижского Института зрения  (Vision Institute), определяя, совместимы ли  графеновые транзисторы с тканями сетчатки глаза  и нейронами глазных нервов.

   Исследователи из университета Питсбурга разработали новый тип электронного переключателя  - молекулу, способную выполнять функции логического устройства.  Использование таких молекулярных логических элементов электронных схем может привести к созданию меньших по размеру, более эффективных  и быстродействующих электронных схем. Руководитель исследования, Хрвойе Петек (Hrvoje Petek) отмечает, что новый переключатель превосходит по показателям существующие в настоящее время молекулярные логические устройства, а принципы, установленные в процессе его изучения, позволяют определить, какими правилами нужно руководствоваться, чтобы создать навое поколение более эффективно работающих молекулярно электронных устройств.   Молекулярный переключатель  был обнаружен в ходе экспериментов с вращением треугольного триметаллического кластера,  атомы металла  в нем связаны с атомом азота, инкапсулированного в клетку фуллерена.

  Петек с соавторами обнаружил, что металлосодержащие кластеры, инкапсулированные в полую клетку из атомов углерода, могут вращаться, принимая одно из нескольких возможных положений, в результате стимуляции электронами. Такое вращение меняет способность системы проводить электрический ток, что позволяет переключаться между несколькими логическими состояниями, форма фуллереновой капсулы при этом сохраняется. Петек отмечает, что помимо прочих преимуществ новая концепция отличается от существующих в выгодную сторону еще и тем, что клетка фуллерена защищает металлический кластер от внешнего воздействия, и он не будет разрушен внешней агрессивной средой. Благодаря форме, приближающейся  к сферической, прототипы молекулярных переключателей могут быть интегрированы в наноразмерные молекулярные электронные системы для создания параллельно работающих вычислительных структур. Работа устройства была продемонстрировано на примере молекулы  Sc3NaC80 , вложенной между двумя субстратами, один из которых представляет собой идеально плоский субстрат из оксида меди, а другой – острый щуп из вольфрама. Приложение напряжения приводить к тому, что равносторонний треугольный кластер Sc3N   может вращаться, принимая шесть предсказанных логических приложений.

    Графен можно использовать для идентификации следов взрывчатых веществ в воздухе, показало исследование китайских и американских ученых. Детектор на основе графеновой пены   «чувствует»  миллионные процентные доли газов, которые являются «отпечатками пальцев» взрывчатки. Новое исследование ученых из Политехнического института Ренсселира показало, что графитовая пена может послужить газовым детектором,  распознающим потенциально опасные и взрывчатые  вещества, причем получать ее можно в промышленных количествах. Открытие указывает путь к новому поколению газовых датчиков, которые смогут использовать снайперы, службы общественной безопасности, войска, а также заводы в производственных целях.
 Новый сенсор дает правильные воспроизводимые результаты по измерению аммиака и диоксида азота в количествах около 20 миллионных долей. Детектор представляет собой графеновые нанослои, наложенные друг на друга. Они формируют структуру, подобную пене. Размер гибкого детектора примерно с почтовую марку, толщина как у фетровой ткани, он гибкий и прочный.

  «Мы очень довольны полученными результатами и надеемся, что эта работа станет первым шагом к созданию коммерчески доступных газовых сенсоров. По нашим данным они горазда более  чувствительны в аммиаку и диоксиду азота, чем коммерчески доступные детекторы сегодня»,  - заявил профессор Нихил Кораткар, руководивший исследованием вместе с профессором Чен Хуамином из Китайской академии наук.

Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Eang K, Galatsis K, Zhou C, коллектив исследователей из Университета Калифорнии (Лос Анжелес), вместе со своим дочерним стартапом, который предложил использовать ОУНТ для создания канала проводимости в обратносмещенном  полевом транзисторе. Полученный транзистор полностью справился с возложенными на него обязанностями по управлению светодиодом, о чем свидетельствуют вольтамперная характеристика, на которой различимы область отсечки, и триодная область при различных напряжениях на затворе. Для реализации более сложной схемы (2Т1С) необходимо обратносмещенные полевой транзистор превратить в транзистор с верхним затвором, например,  путем нанесения дополнительного слоя полиэтиленимина/перхлората лития. Авторы впервые нанесли слой изолирующего полимера  на канал проводимости, покрыв его лишь частично. Это привело к появлению трех областей с различным типом проводимости, что при определенном напряжении делает возможным межзонное туннелирование (полное покрытие канала проводимости приводит лишь к  n–типу проводимости).

     Немецкая военная компания Rheinmetall, которая продемонстрировала новую лазерную систему, устанавливаемую на транспортных средствах, которая способна поразить практически любую цель, начиная от летающих беспилотников и заканчивая взрывными устройствами, установленными на дорогах. Мощность нового лазерного орудия относительно невелика – всего 10КВт импульсной мощности. Но за счет применения некоторых инновационных решений, новый лазер, установленный на подвижной турели боевого транспортного средства буквально «стер» с неба небольшой беспилотник  и продемонстрировал способность поражать прямо в воздухе летящие минометные снаряды, защищая от них пехоту. Маленький лазер, мощностью в 1 КВт, установленный рядом с мощным лазером, используется для подрыва взрывных устройств и поражения слабо защищенных целей, таких как моторные лодки. В ближайшее время специалисты компании  Rheinmetall собираются  довести мощность лазера до значения 100 КВт, что позволит с его помощью поражать цели уже совсем другого класса.

    Институт робототехники и мехатроники германского аэрокосмического центра при участии ряда компаний, в том числе концерна EADS-Astrium, построил беспилотный самолет на солнечных батареях. Длина беспилотника равна 10 метрам, собственный вес 100 килограмм. Самолет способен поднимать 5 кг полезной нагрузки. Его винты вращает пара электромоторов мощностью 2 КВт каждый.
  Аппарат, названный ELHASPA (Electric High Altitude Solar Powered Aircraft), является испытательной площадкой для тестирования технологий, предназначенных для «бесконечно» высокого полета.  На этом самолете европейские инженеры проверяют авионику, системы навигации, двигатели и аэродинамику. Полученные сведения могут создать более продвинутый аппарат, который сможет месяцами оставаться на высотах более 15 километров.

    Компания General Electric успешно завершила испытания более быстрого и дешевого  способа производства ядерного топлива. Новая технология будет коммерциализована и впервые использована на соответствующем ядерном производстве в г.Уилмингтон, штат Северная Каролина. Эта технология является прорывом и позволит существенно снизить стоимость топлива для АЭС. Технология обогащения урана  разделением изотопов с помощью лазерного возбуждения (Silex) была разработана Австралийской компанией Silex  еще в 1992 году. В 2006 году компания  General Electric  получила права на ее коммерциализацию и лицензирование и возглавила дальнейшие разработки. Технология работает на принципе лазерной фотоинициации атомов урана-325. Урановое сырье проходит лазерный луч, настроенный на особую частоту, которая создает электрический заряд у атомов урана-235. Это позволяет поймать их электромагнитной ловушкой и сохранить на металлической пластине.  Если руководство General Electric  запустит завод на базе технологии Silex, впервые в истории атомной энергетики начнется полномасштабное лазерное  обогащение гексафторида урана (UFG). Американцы испытали прототип крохотного устройства, которое генерирует электроэнергию напрямую из бензина, минуя реформинг топлива и промежуточные стадии преобразования его химической энергии. Эрик Ваксман (Eric Wachsman) и его коллеги из центра энергетических исследований университета Мэриленда (UMERC) сумели изменить конструкцию так, чтобы она оказалась больше приспособлена к установке на автомобиль. Речь идет о твердооксидных типливных элементах (SOFC). Этот тип электрихимических генераторов способен переваривать широкий спектр углеводородного горючего без необходимости в извлечении водорода. Однако существующие SOFC довольно громоздки  и потому применяются в основном в стационарном амплуа,  например, как резервные генераторы в зданиях (вспомним впечатляющий « цветочный ящик»). Кроме того, SOFC работает при очень высоких температурах (порядка 800-900оС), а это вызывает сложности с теплоизоляцией, особенно важной в случае работы на борту автомобиля. Ваксман со товарищи путем подбора керамического электролита и оптимизации дизайна ячейки сумели снизить ее рабочую температуру до 650оС. Авторы исследования сократили толщину керамического слоя с сохранением прочности всей конструкции. Более того, по информации Technology Review ученые намерены развить этот проект, снизив нагрев элемента до очень низких температур (для данного класса устройств) – 350оС. Это уже позволить без проблем устанавливать подобный генератор в автомобиле. Такие топливные элементы, потребляющие бензин, могли бы понемногу пополнять запас энергии в аккумуляторах, от которых питается электромотор. Батареи взяли бы на себя начальный разгон автомобиля и вообще все всплески в потреблении энергии, а SOFC работали бы спокойно и равномерно, увеличивая пробег на одной зарядке аккумуляторов.

    Разработан новый метод создания материалов с нанопорами. Его отличает простота и возможность промышленного применения. Этот метод получил название «коллективный осмотический удар»  (« collective osmotic shock» – COS).Ученые из Кембриджа показали, как с помощью осмотических сил можно получить нанопоры, даже если удаляемый компонент полностью инкапсулирован в толще материала.

     Ведущий автор проекта, Исан Сивания (Easan Sivaniah), объясняет суть процесса COS «Эксперимент напоминает школьный опыт с воздушным шариком, наполненным соленой водой. Если его поместить в пресную воду, соль не сможет покинуть шарик, а вот пресная вода вполне способна попасть внутрь, что она и делает, чтобы уменьшить концентрацию соли внутри. Чем больше воды поступает внутрь, тем сильнее раздувается шарик, и в конечном итоге он лопается». «В нашей работе мы, по сути, показали, как это работает для материалов с инородными включениями, которые вызывают серию осмотических «взрывов». Оставленные осмотическими ударами полости соединяются друг с другом и с поверхностью материала, позволяя веществу-примеси выйти наружу и создавая сквозные поры».

      Исследователи продемонстрировали высокую эффективность полученного таким методом фильтра при удалении из воды частиц красителей (малахитового зеленого и метилового оранжевого). В качестве основного вещества выступал полистирол, вторичного – оргстекло, а растворителя – уксусная кислота. Полученный в результате процесса COS материал состоял из множества слоев полистирола толщиной около 65 нм, соединенных «лесом» полимерных фрагментов. Поверхность материала была усеяна порами, размеры которых, по оценкам ученых, составили 1-2 нм.

     Другое возможное применение разработанной технологии – создание многослойных материалов с необычными оптическими свойствами – было рассмотрено совместно со специалистами по фотонике и оптоэлектроники из университета Севильи и Кавендишской лаборатории. Подобные материалы могут быть использованы при создании датчиков, меняющих цвет при поглощении следовых (чрезвычайно малых) количеств химических веществ. Авторы считают, что полученные по технологии COS материалы также могут найти применение при изготовлении светоизлучающих  устройств, топливных элементов, солнечных батарей и электродов для суперконденсаторов.

     На будущее такой быстроразвивающейся отрасли, как цементная, можно смотреть с уверенностью: мировое научное сообщество уже сейчас на пути к технологическому прорыву, созданию продукта с качественно новыми характеристиками, так называемого «зеленного» цемента. Общая цель – сокращение выбросов СО2 на 30 процентов при одновременном улучшении качества, повышении прочности и долговечности продукта. «Структура цементного состава  и его пористость могут быть изменены, например, при добавлении слоистых непуццолановых  силикатов, частицы которых обладают специфической формой и свойствами. Если нанотехнологии пробьют себе дорогу в жизнь, то можно будет выпускать экологически дружелюбные цементы и бетоны, обладающие практически неограниченными и разнообразными характеристиками. Возможно, не за горами эра гибкого и прочного бетона, не требующего использования арматуры при строительстве» - считает генеральный директор международного концерна Holcim (Швейцария) Хория Андреан.

   Уникальная технология, созданная специалистами компании HyperSolar, позволит производить природный газ из солнечной энергии и воздуха. Этот процесс основывается на передовых нанотехнологиях, с его помощью можно ликвидировать неблагоприятные последствия  добычи природного газа без внесения существенных изменений в сегодняшнюю инфраструктуру его доставки и использования – коренным образом изменяется только сама добыча газа. При которой не задействуются подземные источники, а используются экологичные наземные генерирующие станции и «бесплатное» сырье. Новая технология основана на генерации природного газа из простой воды и углекислого газа с использованием солнечного света. Вдохновением к созданию такого метода исследователям послужил естественный фотосинтез в растениях. Именно процесс фотосинтеза имитирует запатентованная технологи HyperSolar, выделяя с помощью солнечной энергии из воды. После этого свободный водород вступает в реакцию с углекислым газом, образуя в конечном итоге метан – а это уже основной компонент природного газа.

     Авторы метода уверены, что этот бесконечный и очень дешевый  природный газ сможет стать достойной альтернативой традиционному. Кроме того, из нового процесса убирается добыча, очистка и переработка ископаемого газа, что также увеличивает перспективы этого метода, не говоря уже о проблеме загрязнения окружающей среды углекислым газам, выделяемой традиционной технологией. Ученые HyperSolar  также продумали момент, связанный с дефицитом воды в наиболее солнечных регионах земли: новая технология способна использовать в качестве сырья даже сточные воды с большим содержанием органических молекул всех видов. Все токсины будут выводиться путем фотоокисления, одновременно с производством молекулярного водорода и чистой воды.

    Немецкие физики использовали обычную свечную сажу для создания лакокрасочного покрытия, которое одинаково эффективно отталкивает воду и маслянистые жидкости. Группа ученых под руководством Дориса Фолльмера (Doris Vollmer) из института изучения полимеров Общества Макса Планка в городе Майнц (Германия)  обратила свое внимание на свечную сажу. Физики заметили, что пленка сажи, которую пламя свечи оставляет на поверхности стекла при достаточно долгом соприкосновении, обладает хорошими водо- и маслоотталкивающими свойствами. Они проанализировали ее химическую и пространственную структуру при помощи сканирующего электронного микроскопа и обнаружили, что пленка состоит из наночастиц углерода диаметром 30-40 нанометров. Эти фрагменты расположены в виде запутанного леса из углеродных хвостов, которые на языке науки называются «сетью фракталоподобных частиц».

   Несмотря на великолепные водоотталкивающие свойства, пленка из сажи несовершенна – она легко распадается на части из-за отсутствия прочных связей между углеродными комочками. Фолльмер и его коллеги преодолели эту проблему – они  скрепили слой сажи при помощи тонкой кремниевой оболочки. Они поместили пленки сажи в эксикатор – сушильную машину – вместе с емкостями с раствором  аммиака и тетраэтил-ортосиликата (ТЭОС) – соединения кремния, кислорода и хвостов этилена. Пары ТЭОС осадались на пленку и распались на составляющие под воздействием аммиака, в результате чего на поверхности сажи остались только атомы кремния. Ученые прогревали полученный материал при температуре 600оС   в течение двух часов до того момента, как угольно черная сажа стала полностью прозрачной. Затем ученые повтори процесс, заменив емкость с ТЭОС сосудом с соединением кремния, фтора и водорода. Физики проверили свойства нового материала. Кроме того данный материал обладает неплохими механическими свойствами – суперлак  сохраняет свои свойства даже при температуре в 400оС. Пластинка толщиной в 3 микрометра поглощает меньше света, чес стекло, что делает этот материал пригодным для покрытия очков и других оптических устройств. После этого ученые попытались исцарапать свое изобретение при помощи песка – поверхность суперлака покрылась крупными царапинами, но не потеряла своих свойств.
       Приведенные выше данные показывают широкое применение новых нанотехнологий в различных отраслях техники.

Будут ли нанотехнологии реальными промышленными инновациями?

13 сентября 2011, Казань.            
Будут ли нанотехнологии реальными промышленными инновациями?
(интервью с академиком Олегом Фиговским корреспондента газеты "Крылья")

   В казанском  техническом университете им. Аю Ню  Туполева (КАИ)  более пяти месяцев работает лаборатория  “Экологически безопасные  промышленные нанотехнологии”, руководимая приглашенным профессором Фиговским  Олегом Львовичем. Профессор О.Фиговский является одним из ведущих ученых мира в области нанотехнологий, большая часть которых освоена промышленностью США, Канады, Германии и Израиля. Профессор О.Фиговский является обладателем приза “Gold Angel Prize” , который вручается лучшим изобретателям мира, приз был ему вручен в 2006 году как создателю 500 изобретений, из которых более 300 были использованы в промышленности России, Украины, США и других стран.
  О. Л. Фиговский является основателем и директором по науке и развитию международного научно исследовательского центра “Polymate” (Израиль-Германия-Канада) и американской компании “Nanotech Industry, Inc.” (Калифорния, США), президентом Израильской ассоциации изобретателей и зав. кафедрой ЮНЕСКО “зеленая химия”.
        Наш корреспондент задал профессору Олегу Фиговскому ряд вопросов.
Кор.  Когда Вы начали свою изобретательскую и научную деятельность?
О.Ф.  Так сложилось, что я начал работать в науке в 18 лет и в 20 лет имел первые два изобретения (первое из них: наноструктурированный асфальтовый бетон – позднее аэродромное покрытие из такого материала было использовано для посадки Бурана), написал первую книгу и сделал доклад на президиуме Академии. Вероятно, я не был обременен знаниями,  не был  корректен  авторитетами и учился в основном самостоятельно. Но мне было очень интересно создавать все время что-то новое и необычное.
И к 25 годам у меня было более 10 изобретений, одно из которых - клей "Бустилат" выпускался 16 предприятиями СССР.
Кор.   А как вы пришли к нанотехнологиям?
О.Ф.   Я разрабатывал новые материалы, в основном специального назначения, используя достижения коллоидной химии и физическое материаловедение. Тогда и термина такого не было – нанотехнологии. Например, я разработал материал на основе жидкого стекла  с высочайшей прочностью и минимальной проницаемости. Еще более  30 лет   тому назад я использовал принцип получения наночастиц  непосредственно внутри материала в технологический период, что делало процесс технологически безопасной. Сегодня этот принцип  широко используется многими исследователями, но тогда это было сделано впервые в мире. Также были изучены растворивые фуллерены и даже растворимые нанотрубки и их использованние в ряде специальных конструкций, например, для ударостойких стекол.
Кор.    Вы широко известны и успешны на западе, так что Вас привело в Россию?
О.Ф.    Когда-то мои предки приехали в Россию по зову Петра Первого и много поколений служили России, как на военном, так и на гражданском поприще.   Я уезжал более 20 лет тому назад, не видя перспектив   для успешной реализации моих новых научных идей. Многие из них я воплотил на Западе, доведя до промышленного производства. В России еще остались основы прежних великолепных научных школ, и есть молодежь, стремящаяся к знаниям, а не только к материальным благам. Это и подкупает.
Кор.    Вы сотрудничаете с КАИ, каковы первые успехи?
О.Ф.    За короткое время выполнено ряд работ, часть которых уже патентуется. Опубликовано несколько научных работ в  престижных международных научных журналах и представлены на научных конференциях, как в России, так и за рубежом. Одна из таких работ - неизоцианатные наноструктурированные полиуретаны - будет представлена на Октябрьской выставке Роснано в Москве. Начаты принципиално новые работы по наноармированию поимеров в твёрдом состянии SDP-методом (метод свехглубокого проникновения), что позволит создавать углеродные нитевидные наноструктуры в объёме изделия.
Но моя главная задача - мечта: научить студентов и аспирантов инновационно мыслить и работать не только на науку, но и на производство. Нами разработан курс лекций "Инновационная инженерия" и уже в ноябре он будет опробован в Открытом Университе Сколково. Ведь главное звено в продвижении в создании и продвижении инноваций именно инженер. Именно высоквалифицированны инженеры создали отечественное авиа- и ракетостроение и ядерные нанотехнологии. Потери знаний и ответственности инженерных кадров - одна из причин многих сегодняшних катостроф в этих областях и на транспорте России.
Кор.    Как я знаю, КАИ представил проект под Вашим руководством  на получение мегагранта  Минобрнауки России, насколько это важно для Вас?
О.Ф.   Первые 40 проектов, уже получивших финансирование, в основном проекты в фундаментальных исследованиях, в них нет ни одного  в области нанотехнологий. Я же предлагаю создать научную школу по промышленным нанотехнологиям, даже еще экологически безопасным. Именно такой технологии не было в мире, и я хотел бы, чтобы КАИ стал пионером в этом научно-техническом направлении. Помимо разработок я предлагаю читать курс по инновационному инженерингу, которого еще нет ни в одном университете России.
 К сожалению условия получения мегагрантов  не нацелены на инженерную инновационную науку, а именно она-то отвечает основным реалиям промышленного производства. В частности, индекс цитирования  только научных статей  не отражает истинных достижений в создании нового, так как в течение времени до получения патента, (а это занимает в Европе, США и Японии  до 2-3 лет) мы не можем опубликовать свои научные результаты. Вероятно научный совет этого проекта в Минобнауки, состоящий в основном из членов РАН, как и в целом  научное экспертное сообщество не до конца осознали, что инновации есть инженерное дело.
Кор.    Будете ли Вы продолжать сотрудничать с КАИ в случае не получения мегагранта?
О.Ф.    Безусловно буду. В конце этого года будет проведена международная конференция по экологически безопасным нанотехнологиям на базе КАИ в Казани. Ведущие ученые из США, Германии, Индии, Китая и других стран заявили о своем участии в этой конференции. Эта конференция один из шагов к созданию кафедры ЮНЕСКО по этой тематике и,  как результат, я надеюсь, в институте появится научная школа по экологически безопасным  промышленным нанотехнологиям.  
Кор.   Большое спасибо  за это интервью и наилучшие пожелания успехов, как в науке, так и в инновационных достижениях, так как Татарстан, как и вся Россия, нуждается в создании новых инновационных производств. Ваш международный опыт маркетинга и управления наукоемким бизнесом сегодня крайне необходим России X